DRD7 3rd workshop closeout

A. Rivetti - INFN

On behalf of the DRD7 steering committee*

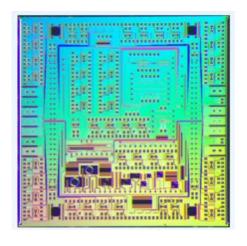
*Jerome Baudot, Marcus French, Ruud Kluit, Angelo Rivetti, Frank Simon, Francois Vasey

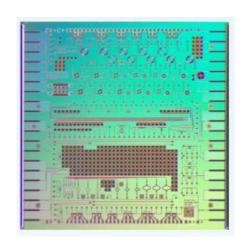
To start with....

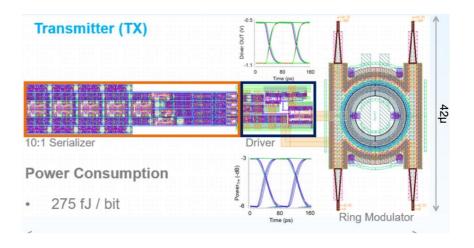
- This was the first workshop after the official DRD7 approval on June 5!
- From project proposal to project implementation
- Workshop organised along DRD7 philosophy: keep the formal part as light as possible and concentrate on scientific and technical challenges
- More than 100 participants

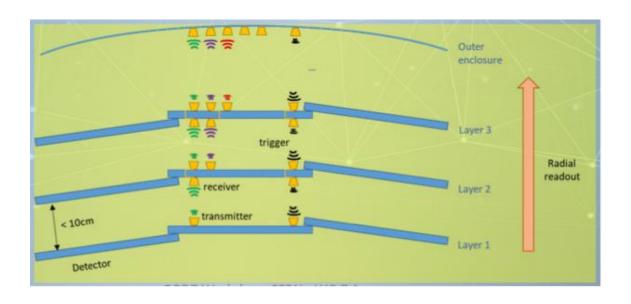
Many thanks to all the WP conveners to put together a very stimulating program!

DRD7: a project-based R&D on electronics

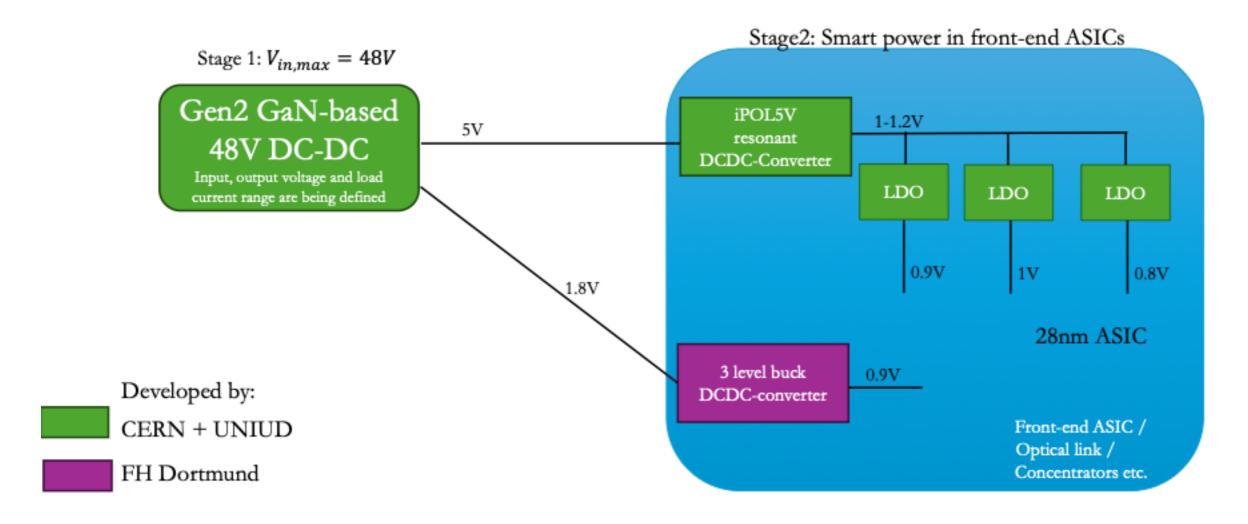

		DRDT
Data	High data rate ASICs and systems	7.1
density	New link technologies (fibre, wireless, wireline)	7.1
aciisity	Power and readout efficiency	7.1
Intelligence	Front-end programmability, modularity and configurability	7.2
on the detector	Intelligent power management	7.2
	Advanced data reduction techniques (ML/AI)	7.2
4D-	High-performance sampling (TDCs, ADCs)	7.3
	High precision timing distribution	7.3
techniques	Novel on-chip architectures	7.3
Extreme	Radiation hardness	7.4
environments and longevity	Cryogenic temperatures	7.4
	Reliability, fault tolerance, detector control	7.4
	Cooling	7.4
	Novel microelectronic technologies, devices, materials	7.5
Emerging technologies	Silicon photonics	7.5
	3D-integration and high-density interconnects	7.5
	Keeping pace with, adapting and interfacing to COTS	7.5

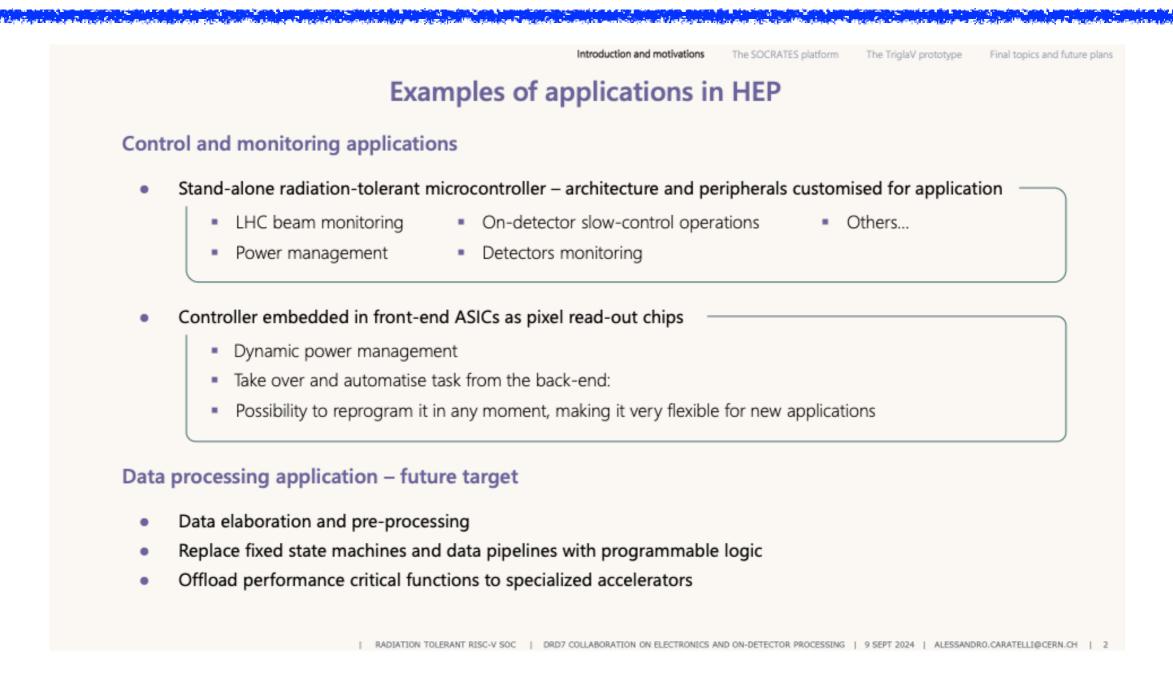

Some (very personal) highlights


Toward 100 Gb/s link...and beyond


Performance Target

100 Gb/s per fibre optical readout with 2.5 Gb/s control optical link operating at a BER of 10^{-12} . Radiation tolerance up to 1×10^{16} particles/cm² and 10 MGy and power consumption of 250 mW. Cryogenic temperature operation for some lower-speed variants.




Beyond current mirror bias...

WP 7.1b: parallel power (DCDC)

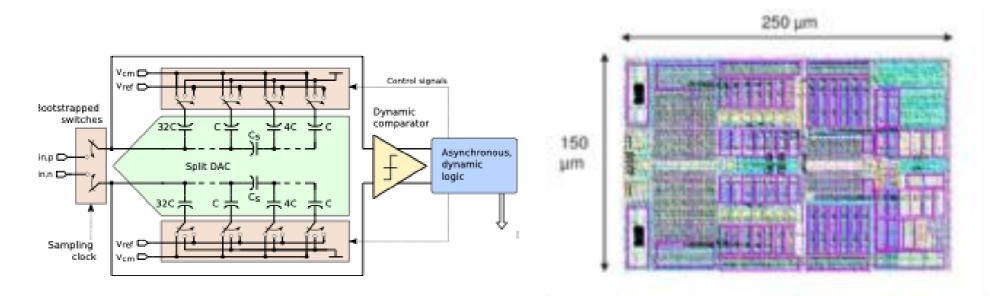
DRD7.1.b Powering, DRD7 workshop 09-09-2014

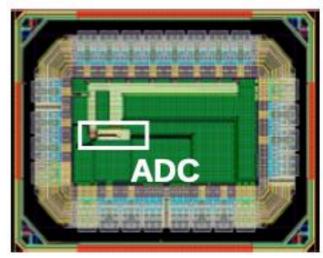
More standardization

How much intelligence on the front-end?

3rd DRD7 workshop close out - Sept, 10th 2024

Physical design on reliable specs


...or avoid excessive safety factors and duplications!


Virtual Electronic System Prototyping (WP7.2c)

Project Description	Develop frameworks for high-level simulation of particle detectors. Topics: 1- Signal generation in detector elements 2- Digitization and Signal Processing 3- Data readout architecture Topics 1. and 3. aim to create independent frameworks that can be used as a single toolchain. Topic 2. will be better defined during the project and might converge in one of the two frameworks or represent a third framework of the chain. Duration 3-4 years.	Multi-disciplinary, cross-WP content	Particle Physics Models: integration of comprehensive particle physics models Geometric Configurations: ability to define and customize the geometry Data Formats: support for common data formats Monte Carlo Techniques: implementation of Monte Carlo methods for simulating particle interactions and energy depositions, Electronics Simulation: accurate modeling of the readout electronics Readout Architectures: support triggered and data-driver
Innovative/strategic vision	Develop a toolchain for virtual prototyping to: 1- model detector at high-level 2- perform architectural studies 3- provide a reference model for the verification	Contributors	systems CERN FR: IPHC Strasbourg USER: PSI (CH), UK Cons., INFN Cagliari (IT)
Performance Target	Topic 1: Cluster multiplicity: 1-10 Position resolution: <10 μm Time resolution: 10 ps to 100 ns Topic 2: to be defined in M7.2c.2 Topic 3: Accuracy: Event/Cycle-level Speed: hundred thousand transactions per second Scalability: readout components library Verification: integrate in verification environment User-Friendly: docs & support for user-only roles		

High performance IPs

- Many interesting developments going on
- How to we manage sharing of IPs
- Encourage even closer collaborations

Even more precise timing...

Project Target

 This project aims to study and propose strategies to optimize and assess ultimate precision and determinism of timing distribution systems for future detectors:

	All kinds of FPGAs	Systems (White Rabbit)	
Assess phase stability and determinism of COTS and Systems used in HEP	Nik hef CPPM	ITAINNOVA DE IF (A Institute de Fisica de Cantebria	
Develop FPGA-agnostic solutions to	Generic hardware and gateware solutions to mitigate FPGA behaviours	Protocols allowing direct clock extraction	
enforce clock stability	UNIVERSITY OF MINNESOTA	University of BRISTOL	
Connection with 7.3b1	Support stability tests implementation in HGTD detector slice	Investigation: online time reconstruction on hardware platform Radboud University Nijmegen Nikhef	

DRD7 Workshop III - WP7.3 - 09 Sept 2024

sophie.baron@cern.ch

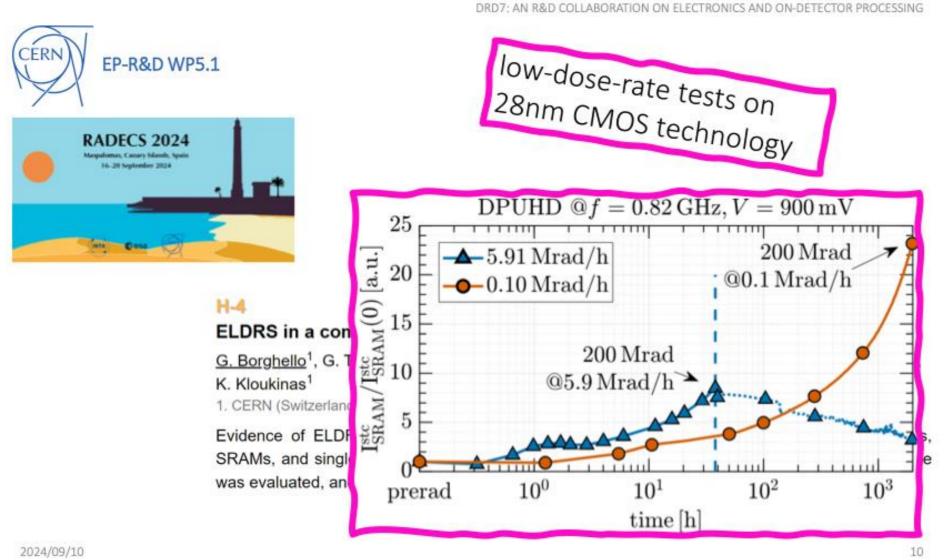
Going to the extremes: very cold

DRD7.4.a - summary and outlook

- Silicon foundries are providing (e.g. Skywater 90nm) or planning to provide access (e.g. GF 22FDX) to cryo-PDKs.
- Fermilab, EPFL, FZJ have ongoing funding and a solid track record (instrumentation, facilities, competences) for the development of cryo-PDKs, including test-chip design, characterisation down to 40 mK and cryo-PDK development in a collaborative effort involving industry partners.
 - > To do: Cryogenic noise measurements, study radiation hardness at cold, AI/ML* based PDK development
- For DRD7.4a, other partners (UK, INFN, others) are expected to provide support and contribute to die-level and wafer-level device characterisation.
- Involvement of industry for model library is related to funding availability. Choice of EKV or BSIM models to be done.
- Choice of target technology for the DRD7.4a project needs to happen at the beginning of 2025: TSMC 28nm is baseline
 - A dedicated consortium agreement to define the distribution and licensing conditions of the DRD7.4a cryo-PDK will probably be needed.

https://bs.fnal.gov/archive/2024/sildes/fermilab-sildes-24-0010-etd.pdf

DRD7 3rd Workshop


DRD7.4.a Device modelling and Development of Cryogenic CMOS PDKs and IP

9-10 September 2024, CERN

20

Going to the extremes: radiation

- Irradiation in more realistic conditions
- Radiation-aware PDK

Going to the extremes

How we combine both?

Electronics needs cooling

Conclusion (1/2)

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

- Ceramics
 - It has also the potential to include electronic features
 - Fully validated initial prototypes in the coming years to high pressure, leak tightness and cooling performance in the following years
 - LHCb VELO Upgrade 2 as benchmark requirements (High pressure, CO₂ evaporative cooling)
- Metal 3D printing
 - X-ray tomography indicates issue with the fill factor
 - Distortion observed created a choke point
 - New run printed
 - focus on improving distortion and fill factor and investigation of electropolishing (material reduction/easier integration?)
- Microchannel cooling and active interconnection developments (CNM, DESY, IFIC)
 - · Aiming to bring more functionalities to the cooling plate
 - Redistribution layer could be an interesting solution for ASICs with through-silicon vias
 - CMOS compatible process to integrate the cooling to the sensor

Electronics needs cooling

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Conclusion (2/2)

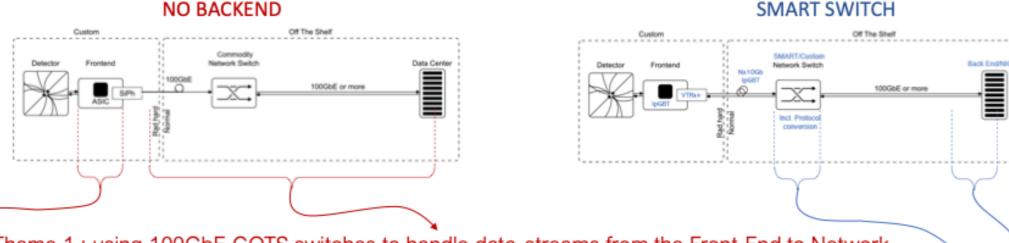
- Microchannel cooling manufacturing via thermocompression (CPPM)
 - Main motivation to reduce the manufacturing cost
 - Very promising results "hyperbar" chamber (resistance to high pressure)
 - Techniques developed can be also explored for integration (chips and connecturization)
- DRD7/8: Cooling and cooling plates
 - "Mechanics" in DRD8 and "Electronics" in DRD7
 - First version of the draft by end of September in the DRD8
 - Request for descoped DRD7 proposal afterwards

Trigger and DAQ

Summary

- · 7.5a is aiming for common TDAQ development with COTs.
 - · Mainly focus on trigger with various platforms.
 - Also generic development for fundamental purpose.
- Our collaboration will be based on the sharing of technical knowledge of
 - · Software/firmware framework
 - · Hardware device
 - · Using git repository, or even hand-on workshop in the future
- Present activities:
 - PI: Alex Keshavarzi (Manchester), Yun-Tsung lai (KEK IPNS)
 - · Monthly meeting on the first Friday of every month
 - Mailing list: ECFA-DRD7-WG7_5-Contributors@cern.ch ECFA-DRD7-WG7_5-Observers@cern.ch
- If you are interested in relevant research works and would like to join us, please do not hesitate to let us know!

2024/09/10


Yun-Tsung Lai (KEK IPNS) @ 3rd DRD7 workshop

21

Front-End to Back-End @ 100 Gb/s

Investigation Themes

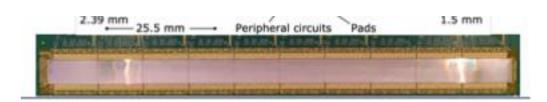
Theme 1: using 100GbE COTS switches to handle data-streams from the Front-End to Network Interface Cards (NICs) or even DAQ processors (CERN LBC and ESE groups).

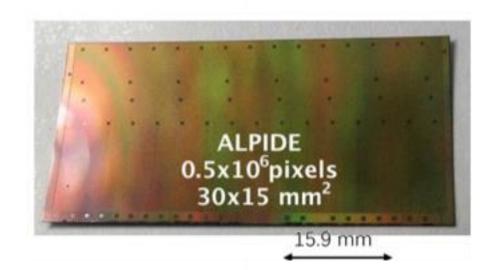
Theme 2: design of a COTS-based high-density switch bridging the detector environment to the COTS/DAQ world (Imperial College).

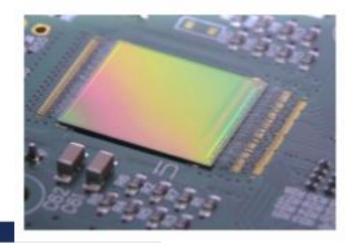
Theme 3: to explore DAQ topologies (based on custom boards for DAQ, concentration and processing) (CPPM CNRS/IN2P3, Nikhef, Brookhaven National Lab

Theme 4: study and design of the building blocks IPs necessary for 100Gb Ethernet cores implementation in future FE ASICs. (Rutherford Lab)

DRD7 Workshop III - WP7.5 - 10 Sept 2024 sophie.baron@cern.ch


Evolutionary, visionary...transformative!


CMOS technologies for sensors



Project Name	Common Access to Selected Imaging Technologies (WP7.6a)		
Project Description	Provide common access and centralized support for selected CMOS imaging technologies, including specific IP development to accelerate the design effort. Duration 3 years, expected to be extended.		
Innovative/strategic vision	Potential of monolithic technologies, confirmed by successful ALICE ITS2 tracker and the widespread community interest. Efficient and affordable technology access requires concentration of the resources in the community.		
Performance Target	Organize common runs and efficient and cost-effective access to selected technologies.		
Multi-disciplinary, cross-WP content	Concerns several detectors types, calorimeters, tracking, etc. Serves other DRDs like DRD3 and DRD6, experiments and projects in HEP. Strong connection with 7.6b (e.g. 3D integration of chiplets). Requires expertise in analog and digital IC design, device design and technology, and significant testing effort.		
Contributors	CH: CERN FR: IN2P3: CPPM, IPHC, IP2I + others IT: INFN(TO, TIFPA, MI, BO, PD, PV, PG, PI) NL: NIKHEF NO: UiB, UiO and USN UK: STFC US: TBC, SLAC already doing effort		

Technologies targeted initially: TPSCo 65nm ISC, TJ 180nm, LF 110nm IS

DRD7.6 - Complex Imaging ASICs and Technologies

Shared access to 3D integration

Shared Access to 3D Integration

Proposed Milestones and Deliverables

- M7.6b.1 (M18) Establish TSVs process on active/passive interposer, wafer/single die
- M7.6b.2 (M24) Establish RDL process and back-side metallization on real CMOS sensors and custom-designed silicon interposer
- D7.6b.1 (M30) Delivery of report summarising the integration of SiPh on detector by 2.5D interposer/chiplet technologies (→ with DRD 7.1)
- D7.6b.2 (M30) Delivery of a report on W2W bonding by industrial partners
- D7.6b.3 (M36) Deliver documentation of the process for the common use

DRD7.6 – Complex Imaging ASICs and Technologies

DRD 7 Workshop, September 2024

Shared access to 3D integration

Shared Access to 3D Integration

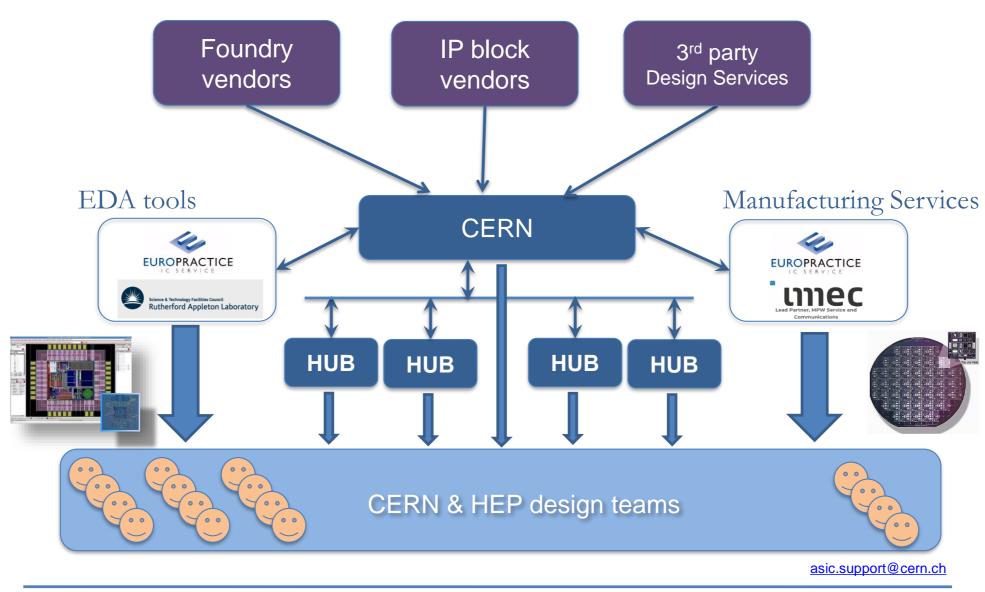
International Distributed Detector Laboratory

- Establish a distributed laboratory that operates as a hub-service for the community
- Each institute highly specialized in one or more technological processes

From community:

- · Request of process/service
- · Rapid prototyping of new detector
- · Detector production (large scale)

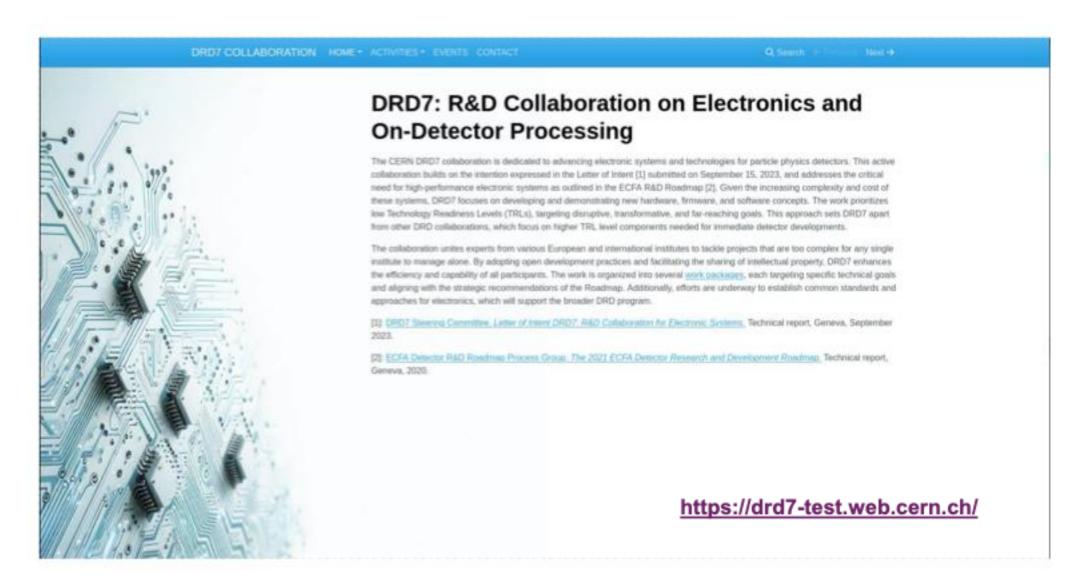
Maintaining a strong connection with application/experiment requirements


S To community (institute/experiment)

DRD7.6 – Complex Imaging ASICs and Technologies

DRD 7 Workshop, September 2024

Maximizing efficiency


15/3/2023

Kostas. Kloukinas @ CERN. ch

8

Last, but not least...

We have a website: do not forget to populate it!

Last, but not least...

Do not forget to cast your ballots for the CB chair election!

Actions

I would like to organize the next steps if elected

- CB meeting in October
 - discussion of collaboration rules
 - · organize offline vote on major items submitted to the board
 - approval of CB Chair Deputy
 - (Resource Coordinator)
- CB meeting in November
 - approval of text of the collaboration rules
 - · need enough time for the draft to be circulated and commented
 - start of the process of nomination for Steering Committee/Spokepersons
 - open a competition for the DRD7 logo ©
 - (set up of the Resource Board)
- Elections in December/January, depending on the outcome of the nomination process
- CB meeting late January/beginning of February
 - endorsement of appointments by the governance (WP coordinators, deputies...)

CERN, 9 September 2024

DRD7 Collaboration Board Chair Election

5

Here we are...

See you at the next workshop!