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Prologue



Indirect exploration of higher scales via flavour

e Flavour changing neutral currrent processes like b— sy or b — sfT¢~
directly probe the SM at the one-loop level.
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e Indirect search strategy for new degrees of freedom beyond the SM

Direct: Indirect:
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Theoretical Framework



T heoretical tools for flavour precision observables

‘|‘ Mw N

short-distance physics
QCD mp, perturbative

_________ I o= few x AQCD:

long-distance physics
nonperturbative

AQco
Factorization theorems: separating long- and short-distance physics

e Electroweak effective Hamiltonian: H gf = —470-25- > Ci(py Mpearny) Oi(p)

o u?~ M3, >> M3 : 'new physics' effects: CM(Mw) 4+ CNY(Mw)

How to compute the hadronic matrix elements O;(p =my) 7

HQET, SCET, ...



Inclusive modes B — Xsv and B — X3€+€_

How to compute the hadronic matrix elements O,(p =my) 7

e Heavy mass expansion for inclusive modes:

m b—":\

'_(B L Xs"/) _) l_(b . Xgarton,y) ’ Anonpert. ~ A%CD/ml?

No linear term Agcp/my, (perturbative contributions dominant)
Chay,Georgi,Grinstein 1990




Inclusive modes B — Xsv and B — X3€+€_

How to compute the hadronic matrix elements O,(p =my) 7

e Heavy mass expansion for inclusive modes:

I'(B . Xs')’) mb;;x,- I'(b . Xg)arton,y) ’ Anonpert. N A%CD/ml?

No linear term Agcp/my, (perturbative contributions dominant)

Old story:

— If one goes beyond the leading operator (04, Og):
breakdown of local expansion

Dedicated analys-is:

naive estimate of non-local matrix elements leads to 5% uncertainty.
b — sv. Benzke,Lee,Neubert,Paz,arXiv:1003.5012

b — stl: Benzke,Hurth, Turczyk,arXiv:1705.10366



Inclusive semi-leptonic penguins



Review of previous calculations for B — X/

e On-shell-ce-resonances =- cuts in dlepton mass spectrum necessary :
1GeV? < ¢2 < 6GeV? and 14.4GeV? < g2 = perturbative contributions dominant

LBR(B — X,*t1~) x 1075

e NNLL prediction of B — X.£T¢—: dilepton mass spectrum
Asatryan,Asatrian,Greub,Walker,hep-ph /0204341

Ghinculov,Hurth,Isidori, Yao,hep-ph /0312128
BR(B — X€T07) e penceveecevs] = (1.63 4+ 0.20) x 107°

BR(B — Xl 1) cur go14.4cev> = (4.044+0.78) x 10~7
NNLL QCD corrections ¢? € [1GeV?, 6GeV?]
central value: —14%, perturbative error: 13% — 6.5%



e Further refinements:

— Completing NNLL QCD corrections:
Mixing into Og (+1% ), NNLL matrixelement of Og (—4% )

— NLL QED two-loop corrections to Wilson coefficients
—1.5% shift for ag,n,(r =my), —8.5% for agn(nt = mw)
Bobeth,Gambino,Gorbahn,Haisch,hep-ph/0312090

— QED two-loop corrections to matrix elements
Large collinear logarithm Log(my/mg) which survive intregration
if a restricted part of the dilepton mass spectrum is considered
+2% effect in the low-¢2 region for muons, for the electrons
the effect depends on the experimental cut parameters

Huber,Lunghi,Misiak,Wyler,hep-ph /0512066 Huber,Hurth,Lunghi, arXiv:0712.3009

e NNLL prediction of B — X /+¢—: forward-backward-asymmetry (FBA)
Asatrian,Bieri,Greub,Hovhannisyan,hep-ph /0209006

Ghinculov,Hurth,Isidori,Yao,hep-ph /0208088,hep-ph /0312128

1 ! d2r 0 d’r
A = / d(cos ) - / d(cos ) )
[ semilep 0 dq2d Cos 6 1 dq2d Cos 6

(6 angle between ¢T and B momenta in dilepton CMS)

App(gg) =0 for g5~ C7/Co g5 = (3.90+0.25)GeV?



Complete angular analysis of Inclusive B — X/

e Phenomenological analysis to NNLO QCD and NLO QED for all angular

observables Huber,Hurth,Lunghi. arXiv:1503.04849
T 3 2 2 2 2 2 (z = cosby)
JPdz = B (1 +Z%) Hr(9%) + 2z Ha(9®) + 2(1 — Z2°) HL(9%)]
I _ Hr(cP) + Hu(P) Ay
dq2 —r T AL dq2 — 3/4 HA(qz)

2
e Dependence on Wilson coefficients Hr(q%) o« 2s(1 — s)? [ICg + 3 Cr|* + |C1o|2]

Lee,Ligeti,Stewart, Tackmann hep-ph/0612156 2
Ha(q%) < —4s(1 — s)® Re [Cw(Cg + 3 C7)]

Hi(q?) x (1 — s)? [|c:9 +2C|* + |C10|2]

e Electromagnetic effects due to energetic photons are large and calculated
analytically and crosschecked against Monte Carlo generator events

2 2
aem log(my /mj) ¢? = (pp+ + 1) = ¢° = (pp+ +pp- +1v)
Huber,Hurth,Lunghi, arXiv:1503.04849



e In the ratio of the inclusive b — sf¢ decay rate in the high-¢© region and
the semileptonic decay rate large part of the nonperturbative effects
cancel out:

dq

a5 dg?

4
Ri(m):l (qg) — m2 —
/ RLACED )

a5 dg?

. : - 2 -
Ligeti, Tackmann, arXiv:0707.1694 /mB QdF(B N ngg)




Intermezzo



Tensions in the inclusive high q2 decay rate 77

Isidori,Polonsky, Tinari,arXiv:2305.03076
Isidori, arXiv:2308.11612

/m% 12 B = X, 00)
RSM(15) — dg” z  B(B— X,fv);5 = (1.50 +0.24) x 10~
,dT'(B — X, tv)
/ dq 702 Belle,arXiv:2107.13855
15 q
_ ! ex —
= "B(B - X )54" - ZB(B — Xipp)h = (2.74£0.41) x 1077

Isidori,Polonsky, Tinari,arXiv:2305.03076

e Experimental semi-inclusive rate is estimated by the sum of the B -+ K
and B - K* modes and a correction factor for the two-body final states
B — K.



e Isidori et al. claim a tension up to 20 — confirming analogous results in

the exclusive modes. Isidori, Polonsky, Tinari,arXiv:2305.03076
Isidori, arXiv:2308.11612

6l
,,E 5:- ]
= '
= | semi-inclusive
l%i al (SM)
|
T
Q ¢ inclusive
0 3 (SM)
| L
3 i EXP
! semi-inclusive
(muons only)




e \We do not find any tension if we also consider our direct result for
the branching B(B — Xsee)ﬁ'\g] and the Babar/Belle measurements.

|Huber,Hurth,Jenkins,Lunghi,Qin QINn,Vos,arXiv:2007.04191
Talk by T.H. at FPCP23 and arXiv:2404.03517

= o | BaBar+Belle
4.63+0.97

. LHCD (isospin)
2.65+0.17

——e—ro SM: BR
2.59+0.68

| . : SM: RxBR(b-ulv)
4.10+£0.81

TN [N N SN N TN NSNS TN NN NN NN SN SO SN N SO S SO S N |

2 3 4 5 6

BR(B — X,/T¢7)[> 15] x 107

e We find a slight tension between the two theoretical and also between
the two experimental results. We have to be patient!



New Physics Reach of Semi-leptonic
Penguin Decays



New physics sensitivit
Phy y |Huber,Hurth,Jenkins,Lunghi,Qin QIin,Vos,arXiv:2007.04191

Constraints on Wilson coefficients ¢{'* and c{{ff

that we obtain at 95% C.L. from present experimental data
(red low ¢2, green high ¢?)

that we will obtain at 95% C.L. from 50ab~—1 data at Belle-II

light blue T e L :
( 9 ) ] ® B[1,6] © B[>14.4] « SM
® B — X,uu (current) @ B — X,uu (50 ab™")
10+
Zz2 of
D L
0_
) [ S —————————————




Assuming Belle II measures SM values
|Huber,Hurth,Jenkins,Lunghi,Qin QIn,Vos,arXiv:2007.04191

Exclusive vs Inclusive Exclusive vs Inclusive
5_,.........,....,...1.,.......,.,,..,1.]._ 5_,....(,. .,.........,....,....,....\,_
[ ® B X,up (50ab™") © B — X,uu (current) [ O B — X,pp (current) + B, — up (current) :
al ~___ Exclusive () * SM al © B — X,up (50 ab™) + B, = pu (300 fb71)
j ® B, - up (current) © B, — up (300 fb~1)
3} —_ __ Exclusive (1) « SM ’
| = (25) J
!
1F
Of
-1:-
"'2'-|




Assuming Belle II measures best fit point of exclusive fit
|Huber,Hurth,Jenkins,Lunghi,Qin QIin,Vos,arXiv:2007.04191

Exclusive vs Inclusive

10

C,LLNP

T l T T T T l T T T T l T T T T l T T T A T NT N ] T T T T

©® B — X,up (50ab™!) © B — X, up (current) ||

____ Exclusive (37) o SM

Exclusive vs Inclusive

-
O B — X,up (current) + By — pp (current)
© B — X,up (50 ab™h) 4+ By — pp (300 fh1)

® B, — pp (current) © By — up (300 1)

____ Exclusive (32) o SM
-




Assuming Belle II measures SM values
|Huber,Hurth,Jenkins.Lunghi.Qin Qin,Vos,arXiv:2007.04191

1.5

b - slk
Inclusive Projection
Belle II 50 ab '

1.0 FF
0.5 2
-9 [
ZZ 0.0
< [
-0.5
-1.0 © EBEES
_____ T (H /B
-1.5 B Combined
-2 -1 0 1 2

Update for post-Ry era arXiv:2404.03517

T T T T T T T T T

15 b —» sff
"~ Inclusive Projection
f Belle IT 50 ab '
1.0 HL-LHC 300 fb~'

0.5 ABCDMN'23
[ \

\ \
-~ -~ ‘
0.0
-005 """"" y, ~ -7 y
== #144
. RB—fX,.tt/.\‘.tu ]
-1.0 1<q*<h ]
. HB—&X,M
1 5 D BB.—?[‘[‘ ]
' B Combined
1 1 i 1 i 1 i 1 i 1 1 1 1 1
-2 -1 0 1 2



Belle-1I Extrapolations Akimasa Ishikawa, B2TiP

Error of Branching ratio B — Xs(f"*’(?_

BF (%) (stat,syst)|0.7/ab 5/ab 50/ab

[1.0,3.5] 29 (26,12) | 13 (9.7,8.0) | 6.6 (3.1,5.8)
[3.5,6.0] 24 (21,12) |11 (7.9,8.0) | 6.4 (2.6,5.8)
> 14.4 23 (21,9) |10 (8.1,6.0) | 4.7 (2.6,3.9)

Error of Normalized Forward-Backward-Asymmetry

AFBn (%) (stat,syst) | 0.7/ab 5/ab 50/ab

[1.0,3.5] 26 (26,2.7) | 9.7 (9.7,1.3) | 3.1 (3.1,0.5)
[3.5,6.0] 21 (21,2.7) | 7.9 (7.9,1.3) | 2.6 (2.6,0.5)
> 14.4 19 (19,1.7) | 7.3 (7.3,0.8) | 2.4 (2.4,0.3)

B — (m, p)¢T¢—, semi-inclusive B — X ¢1T¢~ at 50/ab
(uncertainties like B — Xs¢T¢~ at 0.7/ab)




Nonlocal subleading contributions



Subleading power factorization in B — X3€+€—
Benzke, Hurth, Turczyk,arXiv:1705.10366; Benzke,Hurth,arXiv:2006.00624

e Cuts in the dilepton mass spectrum necessary due to cc resonances

e Additional cut in the hadronic mass spectrum (Xs) needed for \ U i
background suppression (i.e. b — ¢( >se+l/)e—17)

e Kinematics: X is jetlike and m2 < mp\QCD (shapefunction region)
e Multiscale problem = SCET with scaling Agcp/my

Zar
Y

— > M2

AN




Little calculation

e B meson rest frame ¢ =pp —pPx Omp By = mQB 4 j\[)% _ q2

X system 1s jet-like with E'xy ~ mp and m?X < ng

°* PP = m% two light-cone components

npx = py = Ex + |px| ~ O(mp)
npx = pyw = Ex — |px| ~ O(Aqcp)

e ¢ =ng=mp-py ¢ =ng=mp—Dpy

m% = P% = (Mg —n-q)(Mg — - q)

)\Z/\QCD/mb m§<~)\=>mb—n-q~)\



Shapefunction region

Local OPE breaks down for m% ~ X = mp—n-q~ A

)

1 o 1 ( n-k | ) 1
- ' (mpv+k—q)> — mp—n-q mp—n-q ' ") mp—n-q

myv + k
bU + /‘p=mbv+k—q

Resummation of leading contributions into a shape function.

(scaling of ng does not matter here; zero in case of B — Xys7)

Factorization theorem A ~ H-J® S

The hard function H and the jet function .J are perturbative quantities.
The shape function S is a non-perturbative non-local HQET matrix element.

(universality of the shape function, uncertainties due to subleading shape
functions)



Calculation at subleading power

Example of direct photon contribution which factorizes dl ~H-7® S

Qs 2 :
— N low m% region

Example of resolved photon contribution (double-resolved) which factorizes

Af, As Adfr ~H-JQsQRIRJ
R R . Benzke,Lee,Neubert,Paz,arXiv:1003.5012
Gsoft Gsoft \
A
_) Fb

In the resolved contributions the photon couples to light partons instead
of connecting directly to the effective weak-interaction vertex.



Interference of ; and Q7 ir~ H-T®s®J

In the resolved contributions the photon couples to light partons instead
of connecting directly to the effective weak-interaction vertex.

* I
v |
he |
Ty i/ _______ i
%S

drres 1 ) dwq
~ /dw S(w +p+)/ -
dn-qgqdn-q mp w1 + i€
1

— |n-q|F < — 1) —(A-gq+wi) | F - —1
w1 n-qn-q n-q(n-q+ wq)
m? m?
+ﬁ-q(G< < )—G( — ))]gﬂ(w,wﬂ
n-qn-q n-q(n-q+w)

d . d ; 1 - E
o iwyr _te—:th_(3|h(m)...G:"B(rﬁ)---h(o)lB)
B

; 27

*

v

g17(w,wq) =

® Shape function is nonlocal in both light cone directions

e It survives Mx — 1 limit (irreducible uncertainty)



Numerical evaluation of the resolved contributions
Strategy:

e Use explicit definition of shape function as HQE T matrix element
to derive properties

— P T invariance implies that soft functions are real

— Moments of shape functions are related to HQE'T
parameters

— Soft functions have no significant structure outside
the hadronic range

— Values of soft functions are within the hadronic range

e Perform convolution integrals with model functions



Numerical evaluation of the resolved contributions
Strategy:

e Use explicit definition of shape function as HQE T matrix element
to derive properties

— P T invariance implies that soft functions are real

— Moments of shape functions are related to HQE'T
parameters

— Soft functions have no significant structure outside
the hadronic range

— Values of soft functions are within the hadronic range

e Perform convolution integrals with model functions

/ dwt w1? hir(wi, 1) = 0.237 +£0.040 GeV?

o0
New input: / dw1w12 ]7,17((,01,;/,) = 0.15 £0.12 GeV4
— 0
Paz et al. arXiv:1908.02812



Updated result for B — X¢v Benzke,Hurth,arXiv:2006.00624

Charm dependence of jet function: <Constraint on shape function:

0.6 . . . : : : 0.6
04 i 04 F
0.2 | /,' 0.2 |
;?3: 0 Lo e . / 0 '
3 o9 | 02
&
04 —-0.4
—06 —0.6
—0.8 —0.8
-2 15 -1 -05 0 0.5 1 1.5 2 -2 =15 -1 -05 0 0.5 1 1.5 2
Benzke,Hurth,arXiv:2006.00624 Neubert et al., arXiv: 1003.5012
17 17
Folsey € [-0.4%, 4.7%) Fioliey € [-1.9%, 4.7%)
total total
Frotal e [-3.7%, 6.5%) Fowl e [-5.2%, 6.5%)

(In addition: large scale dependence)

Still: Largest uncertainty in the prediction of the decay rate of B — Xy



Remarks

e T here is a significant scale dependence of around 40% if one chooses the hard-
collinear instead of the hard scale at LO. Not included in error above !

e A NLO analysis will significantly reduce large scale dependence and also the
dependence on the charm mass.



Remarks

e There is a significant scale dependence of around 40% if one chooses the hard-
collinear instead of the hard scale at LO. Not included in error above !

e A NLO analysis will significantly reduce large scale dependence and also the
dependence on the charm mass.

e ITask 1 For NLL analysis we have to establish a factorisation theorem.

Al xc HXJRSKRQJ

e Task 2 Various steps of the NLL analysis Bartocci,Boer,Hurth



e Task 1 For NLL analysis we have to establish a factorisation theorem.

Interference of Qg and Qg

drres ea dw dw
— ~ = s/dW5(w+P+)/ — / 2 ggg(w, w1, wn)
dn-qdn-q mp wi+n-q+ie) wr+n-q—is

gss(w,wi,wr) = MLB(Bﬁw(tn) ...s(tn +un)5(ri)... h(0)|B)g.T.

e Subtlety in the Qg-Qg contribution: convolution integral is UV divergent

— This implies that there is no complete proof of the factorization
formula yet.

— Nevertheless one shows that scale dependence of direct and resolved
contribution cancel. Benzke,Lee,Neubert,Paz,arXiv:1003.5012



e Task 1 For NLL analysis we have to establish a factorisation theorem.

Refactorisation in subleading B — Xsvy Hurth,Szafron,arXiv:2301.01739

e Naive factorisation theorem with anti-hardcollinear Jet functions .J

= — |
dF(B — XS}/) — z W Z I_Ii(n) X J,(n) R Si(n)
_ n=0 i —
1 Z PIi(n) R Ji(n) R Si(n) 0% jgn) 4 Z I_Ii(n) ® Ji(n) ® S,'(n) ® jgn) ® jgn)

i

e Contribution of the gluon dipole operator does not factorise

e One can identify divergences in resolved and direct contribution in
SCET-I as endpoint-divergences

e One can use refactorisation techniques developed in collider examples
Neubert et al.,arXiv:2009.06779

e First QCD application with nonperturbative objects in flavour physics



Dedgeneracy in EFT leads to endpoint divergences
Hurth,Szafron,arXiv:2301.01739

) Ghe




Remarks

e There is a significant scale dependence of around 40% if one chooses the hard-
collinear instead of the hard scale at LO. Not included in error above !

e A NLO analysis will significantly reduce large scale dependence and also the
dependence on the charm mass.

e ITask 1 For NLL analysis we have to establish a factorisation theorem.

Al xc HXJRSKRQJ

e [ask 2 Various steps of the NLL analysis Bartocci,Boer,Hurth



Remarks

e T here is a significant scale dependence of around 40% if one chooses the hard-
collinear instead of the hard scale at LO. Not included in error above !

e A NLO analysis will significantly reduce large scale dependence and also the
dependence on the charm mass.

e [ask 1 For NLL analysis we have to establish a factorisation theorem.

df < HXx JRS®J
e Task 2 Various steps of the NLL analysis Bartocci,Boer,Hurth
— analysis of renormalisation properties of the soft function
— ag (two-loop) corrections to anti-jet function
— hard matching at order ag
— «ag corrections to quark jet function

— use RG techniques to run various functions to a common scale.



Remarks

e T here is a significant scale dependence of around 40% if one chooses the hard-
collinear instead of the hard scale at LO. Not included in error above !

e A NLO analysis will significantly reduce large scale dependence and also the
dependence on the charm mass.

e ITask 1 For NLL analysis we have to establish a factorisation theorem.

Afr xc HXxJRSKJ

e [ask 2 Various steps of the NLL analysis Bartocci,Boer,Hurth

— analysis of renormalisation properties of the soft function

A
Sren(w, w1) = / dw' Zs(w, W', w1, w]) Spare(w’, w1 ).

*

Y
* I
v |
he !
X vy > //// i/
%S

Bartocci,Boer,Hurth, to appear next week




e [ask 2 Various steps of the NLL analysis Bartocci,Boer,Hurth

A xcHXxJRSK®J

In SCET, we can compute gauge invariant pieces separately.
— analysis of renormalisation properties of the soft function \/

— ag (two-loop) corrections to anti-jet function
We already calculated all diagrams for me — my = 0 \/

— g corrections to quark jet function known v

— hard matching at order as known

— use RG techniques to run various functions to a common scale.

We already checked the pole cancellation for me — mqy = 0 \/



Remarks

e T here is a significant scale dependence of around 40% if one chooses the hard-
collinear instead of the hard scale at LO. Not included in error above !

e A NLO analysis will significantly reduce large scale dependence and also the
dependence on the charm mass.



Remarks

e T here is a significant scale dependence of around 40% if one chooses the hard-
collinear instead of the hard scale at LO. Not included in error above !

e A NLO analysis will significantly reduce large scale dependence and also the
dependence on the charm mass.

e Voloshin term of +3% (shape function effect neglected) which is part
of the resolved contributions has to be added:

;b1_7m € [0.4%.4.7%] — fb1_7>s,y = (5.15+2.55)%



Remarks

e T here is a significant scale dependence of around 40% if one chooses the hard-
collinear instead of the hard scale at LO. Not included in error above !

e A NLO analysis will significantly reduce large scale dependence and also the
dependence on the charm mass.

e Voloshin term of +3% (shape function effect neglected) which is part
of the resolved contributions has to be added:

Fyley €104%,47%] -  FH. =(515+255)%

e Comparison with the numerical analysis in Paz et al. arXiv:1908.02812

Foloey € [-0.4%, 4.7%)] FiT. € [~0.4%, 1.9%)]



Comparison with the numerical analysis in Paz et al. arXiv:1908.02812

FI7._ € [-04%, 1.9%] versus Fil. €[-0.4%, 4.7%]

b—rsy

Reason for significantly smaller error is twofold:



Comparison with the numerical analysis in Paz et al. arXiv:1908.02812

FIT_ € [-04%, 1.9%] versus FLl., €[-0.4%, 4.7%)]

b—sy

Reason for significantly smaller error is twofold:

— For charm dependence only the parametric uncertainty was used

1.17GeV < m,. < 1.23GeV

We use scale variation of the hard-collinear scale

Phe ~ /myAqcp  from  1.3GeV to 1.7GeV  and get
1.14GeV < m, < 1.26 GeV



Comparison with the numerical analysis in Paz et al. arXiv:1908.02812

FIT_ € [-04%, 1.9%] versus FLl., €[-0.4%, 4.7%)]

b—sy

Reason for significantly smaller error is twofold:

— For charm dependence only the parametric uncertainty was used

1.17GeV < m,. < 1.23GeV

We use scale variation of the hard-collinear scale

Phe ~ /myAqcp  from  1.3GeV to 1.7GeV  and get
1.14GeV < m, < 1.26 GeV

— Numerically large 1/m§ term due to kinematic factors was dropped
compared to the original analysis in 2010 Neubert et al., arXiv: 1003.5012
This kinematic 1/m# term has a 1/my shape function, all other 1/m#
contributions have a shape function of order 1/m§. So no cancellation
expected. Benzke,Hurth,arXiv:2303.06447

The large Kinematic l/mg term can be used as conservative estimate
of all l/mi)? contributions to resolved Oz, — O;.



Comparison with the numerical analysis in Paz et al. arXiv:1908.02812

FI7._ € [-04%, 1.9%] versus Fil. €[-0.4%, 4.7%]

b—rsy
Reason for significantly smaller error is twofold:

— For charm dependence only the parametric uncertainty was used

1.17GeV < m,. < 1.23GeV

We use scale variation of the hard-collinear scale

Phe ~y/mpyAqep  from  1.3GeV to 1.7GeV  and get
1.14GeV < m, < 1.26 GeV

— Numerically large 1/m§ term due to kinematic factors was dropped
compared to the original analysis in 2010 Neubert et al., arXiv: 1003.5012

This kinematic 1/m# term has a 1/my shape function, all other 1/m#
contributions have a shape function of order l/mg. So no cancellation
expected. Benzke,Hurth,arXiv:2303.06447

The large Kinematic 1/m§ term can be used as conservative estimate
of all l/mi)? contributions to resolved Oz, — O;.

Underestimation of the uncertainty due to the resolved contribution.
But used in recent b — sy analysis. Misiak, Rehman, Steinhauser, arXiv:2002.01548v?2



Updated result for B — X/ Benzke Hurth arXiv:2006.00624

Rather symmetric jet function —

Various shape functions lead to very similar values of the convolution

1L
05 | Bl
B o b
£ -05 -h“w\"‘\-\.\\ //
R \\_\ ///
—15 ' B . ' .
-2 —-1.5 -1 —0.5 0 0.5 1 1.5 2
arXiv:2006.00624 arXiv:1705.10366
Folysee € [+0.2%, +2.6%] Folsseel1/my € [0.5%, +3.4%]

We find large scale dependence of the results in both penguins
= «g corrections desirable

Numerical relevant contributions to O(l/mf)
Fio:  O(1/mZ) but |Cy 10| ~ 13|C7,|



Epilogue



Self-consistency of the SM

Do we need new physics beyond the SM ?

e It is possible to extend the validity of the SM up to the Mp as weakly coupled theory.

&h
S
=
=
o
0 -
2 .
w L
02} v !
(e = -"==-"==®®s===-====== min leVv --==-==s===co=e.-o
2
O.O —_);b | | | | | | | | | | | | | | | |
102 10* 10 10® 10" 10?2 10" 10% 10 10%
RGE scale g in GeV Buttazzo et al. arXiv:1307.3536

High-energy extrapolation shows that the Yukawa couplings, weak gauge couplings
and the Higgs self coupling remain perturbative in the entire energy domain between

the electroweak and Planck scale (no Landau poles !).

e Renormalizability implies no constraints on the free parameters of the SM Lagrangian.



Experimental evidence beyond SM

e Dark matter (visible matter accounts for only 4% of the Universe)
e Neutrino masses (Dirac or Majorana masses 7)

e Baryon asymmetry of the Universe (new sources of CP violation needed)



Experimental evidence beyond SM

e Dark matter (visible matter accounts for only 4% of the Universe)
e Neutrino masses (Dirac or Majorana masses 7)

e Baryon asymmetry of the Universe (new sources of CP violation needed)

Caveat:

Answers perhaps wait at energy scales which we do not reach with present experiments.



Michelangelo Mangano

e [ he days of "guaranteed” discoveries or no-lose theorems in particle physics are over,
at least for the time being .....

e but the big questions of our field remain open (hierarchy problem. flavour, neutrinos,
dark matter, baryogenesis,...)

e T his simply implies that, more than for the past 30 years, future HEP’'S progress is
to be driven by experimental exploration, possibly renouncing/reviewing deeply rooted
theoretical bias.
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Refactorisation

Hurth,Szafron,arXiv:2301.01739



Factorisation of direct contribution

dl’

1 1 A
— = N3 / du C®! (my, u) / du’ CPY* (myp, v) / dwJ Mg (ps + w),u,0)S (w)
dE)/ 0 0 —P+

2 ’ (_1) 1 / dtdt’ 4 —imp (ut—u't")+ipx
2 2 — d b p
J (p u,u ) N, 27 2n) X e

Y 1y s (e (47 +2) T (17) o Blpes (0) (14 75)

Disc [<0| tr
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Factorisation of direct contribution

dl’

1 1 A
s = NB / du CBI (mba ll) / du’CBl* (mba ll’) / dw J (MB (p+ + (1)) » U, u,)S ((1))
dE‘y 0 0 —P+

S (w) = L ﬂe"i“” (B| h(tn) S, (tn) S;fl (0) 2 (0) |B)
2mp 21




Endpoint divergence in direct contribution at leading order

Hard matching coefficients

ng Gp

w dn? /2

CPo (mp,u) = (-1)

u
N Gy = (=1)=C13 (my)

convoluted with jet function

J (pz, u, ll’) = Cr & O(p*) A(e) d(u — u')u'~¢(1 — u)~* (p_Q) -

A my, 1L

lead to endpoint divergence in the v — 0 limit

R B | : 1
/ du—/ du'—,u1_€5(u —u') N/ du—
0 u /, U 0 U+ €




Factorisation of resolved contribution

A _ -
= Ny [CA? (mb)|2 dw Jo (mp (ps + w)) /dw/ dwy J (wi) J (w2) S (0, w1, W)

— P+

dT
dE,

Disc |i [ dtac™ (O T [, (@) Az, (0)] 0
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Factorisation of resolved contribution

A _ —
= Na |CA (my)|” [ dw g (my (ps + w)) /dwf dwyJ (w1) J (02) 8 (w, w1, w2)

—P+

dr
dE,

Anti-hardcollinear jet function J(w) is defined
on the amplitude level.

The . Ssoft
Oreq =i / AT [ Leg (). 040 (0)]
b. Ghe

dt —itw [— I o v Ha
_ / do [ et (5] 4 (m) [T () 05 Bz, ()AL (0) [1(0)]

d
84

Decomposition to all orders: IJ (w)

=J (w) 1° [ ny%]
af



Factorisation of resolved contribution

A — —%
= Na |CA (my)|” [ dw g (my (ps + w)) /a’wf dwyJ (w1) J (02) 8 (w, w1, w2)

—P+

dr
dE,

Operatorial definition of the soft function in position space S (u,t,t")

S (.t t) = (d—2)%¢2 (B|h (un) (1 — 5) [Sn (un) tS} (un)] Sy (un) SL ('A + un) |

PR g (¢ 4+ um) 7, (t7) P, (17) 51.0) [S0 (0) £ (0)] (14 95) 1 0) |B) / (2m)




Endpoint divergence in resolved contribution at leading order

T A .
—=— = Na |CA0 (mb)l2 dw Jg (my, (ps + w)) /dwf dwy J(wi) J (02) S (W, w1, wy)
04 — P+

e Endpoint divergence occurs only for asymptotic wy ~ wy > w

e For wy; ~ wy > w light quarks become "hard-collinear" and
can be decoupled from the soft gluons

e As a consequence the structure of the soft function corresponds
to the leading power shape function S(w)

wq 2 — oo corresponds to t,t' — 0 and gs(un) = S, (un)gpe.(un), g(0) = gneS;(0)

S (u,t,t') = (d —2)°g2 (B| h (un) (1 — v5) [Sy (un) t"Mun)] Sﬁm + un)
B g, + um) g ) "5, (1aySTT0) [500) 181 (0] (14 %) R (0) |B) / (2ms)

S (u) = (B|h (un) Sy (un) S} (0)h(0)|B) / (2ms)



Endpoint divergence in resolved contribution at leading order

dT A = T
S = Nal A ) [ my (0. + ) [don] dnT (00 T (0208 (@,01,00)
Y — P+

e Endpoint divergence occurs only for asymptotic wy ~ wy > w

e For wy ~ wy > w light quarks become "hard-collinear" and
can be decoupled from the soft gluons

e As a consequence the structure of the soft function corresponds
to the leading power shape function S(w)

More general: N
Asymptotic (w; ~ we < w) soft function S (w,ws,ws) is a convolution
of a perturbabtive kernel K and the leading power soft function.

g(w,wl,wg) = /dw'K(w,w',wl,wg)S(w')



Endpoint divergence in resolved contribution at leading order

dT A TN T
—— = Na[C* (mp)|” [ dew J (m, (p++w))/dwf dwy J (w1) ) (02) S (w, w1, W)
Y — P+

e Endpoint divergence occurs only for asymptotic wy ~ wy > w

e For wy ~ wy > w light quarks become "hard-collinear" and
can be decoupled from the soft gluons

e As a consequence the structure of the soft function corresponds
to the leading power shape function S(w)

More general: N
Asymptotic (w; ~ we < w) soft function S (w,ws,ws) is a convolution
of a perturbabtive kernel K and the leading power soft function.

g(w,wl,wg) = /dw'K(w,w',wl,WQ)S(w')

Leading order in ay:

A W)\ €
S (w,wy,wy) = CrA(e) (i) w%_fd(ah — w2)/ dw' S(W") ((w - ))




Refactorisation at leading order

dl’ u.u' —0 A0 2 QISCF ]. / mb(w + p+) -
— R = — C dw S
dE., N | Lo (mb)‘ (47) my, e ro(w

= — - NIC? (m A dw S

One verifies that

df asy - (_l)ﬂ u,u’—)O
(IE dE,



Refactorisation conditions can be formulated on the operator level

Express the fact that in the limits v ~ ' < 1 and wq ~ wo > w
the two terms of the subleading Og — Og contribution have the
same structure.

° IIC B (my, w ]] = (=1)C4 (myp) mpJ (umy)

([g(u)] only denotes the leading term of a function g(u) in the limit © — 0)

e S (w,wi,ws) corresponds to S (w,w;,ws) in the limit wy ~ ws > w

(In this limit: gs — gs. and higher power corrections in w/wj 2 are neglected)

N

o [2. dwlJ (my(ps +w) u ) S =[5 dwdy(ma(ps +w))S(w, myu, myu

(In this limit yx. — ¢se, brackets indicate again that the u — 0 and v’ — 0 limits)

T he refactorisation relations are operatorial relations that
guarantee the cancellation of endpoint divergences between
the two terms to all orders in as.

Finally we show that refactorisation and renormalisation commute.



Refactorised (endpoint finite) factorisation theorem

We subtract the two asymptotic terms

0 =2 |e m)f* [ daody (oo +9) |

my

oo

~

— wl —
dle(wl) / dwg.] (WQ) S (w,wl,wg)
0

+2/\// du [CP (mp, u ]]/ du' [CP™ (mp, )] dw[[J(mb(p++w),u,u')S(w)]]

—P+

with

~

J(mp (p+ +w),u,u') S(w)]| = Jg(mp(ps + w))S(w, mpu, mpu’)
|CP (my, )] = C’AO (mb) myJ (umb)

from the all-order factorisation theorems we derived

AT oo - w1 . A
L= N [0 (my) / dy T (w1) / dinT (w2) [ dwd, (my (ps + ) S (w, w1, )
Y —00 —00 —P+

1 1 A
+ QN/ duCP! (my, u) / du' CB™ (my, o) dwJ (my (py +w) ,u,u’) S(w)
0 u

—P+



Refactorised (endpoint finite) factorisation theorem

and end up with the factorisation theorem without endpoint divergences:
|A+B 2/\//p { (my(p+ +w)) [CA° (mb)|2
-
/ dw, /wldwgJ (wi) T (ws) [S (w,wq,wy) — O(wy — mb)O(wg)g(w,wl,wg)]
[ [ [OFS omay) O () T s (1)) S

- [[CBI (mp, u )] IIC’BI* (mb,u')]] [J (my (py + w) ,u,u’) S(w)]]]} ,




Refactorised (endpoint finite) factorisation theorem

and end up with the factorisation theorem without endpoint divergences:
2
|A+B N / { (my(ps. +w)) |C2 (my)|
—P+
w1 ~
/ dwl / dw2J wl) J (wQ) [S (w wl,wg) 0(w1 — mb)H(wg)S(w,wl,wg)]

/ du/ du' C’fé (my, u) CPY™ (my, ) T (my (py + W) ,u,u') S (W)

— [CP! (mp, w)] [CP™ (ms, )] [T (1 (p+—|-w),u,u')8(w)]]]},

Finally we show that refactorisation and renormalisation commute.
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Quark-hadron duality violated in B — X ¢t¢— 7  BBNS, arXiv:0902.4446

Within integrated branching ratio the resonances J/i» and ﬁ;-if exceed the
perturbative contributions by two orders of magnitude.

B(B — X, It /ds [1079]
L




Quark-hadron duality violated in B — X /T¢~ 7 BBNS, arXiv:0902.4446

Within integrated branching ratio the resonances J/v and yf)’ exceed the
perturbative contributions by two orders of magnitude.

for

2)|E

The rate I; — lrete™ (a) is connected to the integral over IM(q
which global duality is NO'T expected to hold.

In contrast the inclusive hadronic rate I{ — I,X (b) corresponds to the
imaginary part of the correlator M(g2).



B[1,6, M¢"] / B[1,6]

Hadronic cut dependence in B — X/
Huber,Hurth,Jenkins,Lunghi arXiv 2306.03134

e We computed the fully differential distribution of B — X1/~ at O(as)
in the OPE

e Also the three B — Xs€+€— angular observables, together with the
B — X,/—v branching fraction, all with the same hadronic mass cut

e We find effective Independence of the hadronic mass cut

R[1,6, M) / RI[1, 6]

08l — O(a,) = O(a\) ] — O(a,) = O(az)\)

, === ;i =[2.5,10] GV 1 Missing O(1/m}) 1
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cee= 4 =[2.5,10] GeV [ Missing O(1/my})
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Hadronic cut dependence in B — X //

e Additional cut in the hadronic mass spectrum (Xs) needed for
background suppression (i.e. b — ¢(— setv)e™ )

e Previous SCET calculation with some simplifications and certain
problems with SCET scaling (g assumed to be hard)
Uncertainty due to subleading shape functions estimated to 5 — 10%

Lee,Ligeti,Stewart, Tackmann hep-ph/0512191
Lee, Tackmann arXiv:0812.0001

e New Strategy to minimise uncertainty
Huber,Hurth,Jenkins,Lunghi arXiv 2306.03134

— Calculation of cut dependence using OPE for mild hadronic cuts
— Analyse breakdown of OPE via A1 power corrections
— Try to interpolate betweeen SCET and OPE calculation

— Use cut-independent ratios in OPE and SCET to analyse
interpolation



