QCD CORRECTIONS TO SEMILEPTONIC AND NONLEPTONIC DECAYS Matteo Fael (CERN)

Christophest: Precision Predictions for FCNC Processes BERN - October 25th, 2024 with M. Egner, K. Schönwald and M. Steinhauser

Funded by the European Union

INCLUSIVE DECAYS OF B MESONS

Rare decay $B \rightarrow X_{s\gamma}$

Semileptonic $B \rightarrow X_c l \bar{\nu}_l$

We need precise predictions in the SM, often at the 1-2% level!

Nonleptonic decays

Lifetime of B mesons

SEMILEPTOINC B DECAYS

- ► Extraction of the CKM element $|V_{cb}|$.
- Determination of the non-perturbative matrix elements from experimental data.
- Predictions for processes with FCNC crucially depend on these SM inputs.

►
$$|V_{tb}V_{ts}^{\star}| \simeq |V_{cb}|^2 (1 + O(\lambda^2))$$

► $\epsilon_K \simeq |V_{cb}|^4 x$

THE HEAVY QUARK EXPANSION

THE HEAVY QUARK EXPANSION

Free quark decay

 $\overline{\nu}_l$ 0 X0000

LIFETIMES

Total width

$$\frac{1}{\tau(B_q)} = \Gamma_b + \delta \Gamma_{B_q}$$
$$= \Gamma_{\text{non leptonic}} + \sum_{l=e,\mu,\tau} \Gamma(B \to X l \bar{\nu}_l) + \dots$$

Nonleptonic decays (dominant)

► $b \rightarrow c \bar{u} d$

 $\blacktriangleright b \rightarrow c\bar{c}s$

Lifetime ratios

$$\frac{\tau(B_q)}{\tau(B_{q'})} = 1 + (\delta\Gamma_{B_q} - \delta\Gamma_{B'_q}) \tau(B_q)$$

Test the SM and framework used
Perform indirect BSM searches

THE HEAVY QUARK EXPANSION

$$\Gamma = \Gamma_3 + \Gamma_5 \frac{\langle B | \mathcal{O}_5 | B \rangle}{m_b^2} + \Gamma_6 \frac{\langle B | \mathcal{O}_6}{m_b^3}$$

 f_1 f_2^+ $\frac{\langle B \rangle}{2} + 16\pi^2 \frac{\langle - \cdot \rangle}{m_b^3}$ $|\tilde{\mathcal{O}}_{6}|B\rangle$ + • • • $\tilde{\mathcal{O}}_6$ \mathcal{O}_7

Lenz, Piscopo, Rusov, JHEP 01 (2023) 004

SEMILEPTONIC DECAYS

Total rate

NLO: Nir, *Phys.Lett.B* 221 (1989) 184 NNLO: Czarnecki, Pak, *Phys.Rev.Lett.* 100 (2008) 241807, *Phys.Rev.D* 78 (2008) 114015 N3LO: **MF**, Schönwald, Steinhauser, *Phys.Rev.D* 104 (2021) 016003, *JHEP* 08 (2022) 039 NLO at $1/m_b^2$: Mannel, Pivovarov, Rosenthal, *Phys.Rev.D* 92 (2015) 5, 054025

• E_{ℓ} and M_X^2 moments

NLO differential rate: Aquila, Gambino, Ridolfi, Uraltsev, *Nucl.Phys.B* 719 (2005) 77; **MF**, Rahimi, Vos, *JHEP* 02 (2023) 086. NNLO: Biswas, Melnikov, JHEP 02 (2010) 089; Gambino, JHEP 09 (2011) 055.

NLO at $1/m_b^2$: Alberti, Gambino, Nandi, *Nucl.Phys.B* 870 (2013) 16, *JHEP* 01 (2014) 147

• q^2 NLO: Jezebel, Kühn, *Nucl.Phys.B* 320 (1989) 20 NNLO: Fael, Herren, NLO up to $1/m_b^2$: Mannel, Moreno, Pivovarov, *JHEP* 08 (2020) 089

Kinetic scheme

Bigi, Shifman, Uraltsev, Vainshtein, *Phys.Rev.D* 56 (1997) 4017 Czarnecki, Melnikov, Uraltsev, Phys.Rev.Lett. 80 (1998) 3189 **MF**, Schönwald, Steinhauser, *Phys.Rev.Lett.* 125 (2020) 052003, *Phys.Rev.D* 103 (2021) 1, 014005

NONLEPTONIC DECAYS

NLO: Altarelli, Petrarca, Phys.Lett.B 261 (1991) 303; Bagan, Ball et al, Phys.Lett.B 351 (1995) 546, Nucl.Phys.B 432 (1994) 3 Lenz, Nierste, Ostermeier, Phys.Rev.D 56 (1997) 7228; Krinner, Lenz, Rauh, Nucl.Phys.B 876 (2013) 31

NNLO (massless and without resummation): Czarnecki, Slusarczyk, Tkachov, Phys.Rev.Lett. 96 (2006) 171803

LO at $1/m_b^3$: Lenz, Piscopo, Rusov, JHEP 12 (2020) 199 Mannel, Moreno, Pivovarov, JHEP 08 (2020) 089 NLO at $1/m_b^2$ ($b \rightarrow c \bar{u} s$): Mannel, Moreno, Pivovarov, 2408.06767 [hep-ph]

- WA, PI at NLO: Beneke, Buchalla, Greub, Lenz, Nierste, Phys.Lett.B 459 (1999) 631; Nucl.Phys.B 639 (2002) 389; Franco, Lubicz, Mescia, Tarantino, Nucl.Phys.B 625 (2002) 211; Nucl.Phys.B 633 (2002) 212
- LO 4q at $1/m_b^4$: Gabbiani, Onishchenko, Petrov, Phys.Rev.D 68 (2003) 114006; Phys.Rev.D 70 (2004) 094031

 \blacktriangleright Error on $\Gamma(B)$ dominated by theoretical uncertainties on $\Gamma_3!$ ► GOAL: push accuracy for $\Gamma_3^{\text{non leptonic}}$ at NNLO

Error budget

Lenz, Piscopo, Ruov, JHEP 01 (2023) 004

NONLEPTONIC DECAYS AT NNLO: CHALLENGES

C

Four loop master integrals Non-
depending on
$$\rho = m_c/m_b$$
 Issue

 $\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{q_{1,2}=u,c} \sum_{q_2=d,s} \lambda_{q_1q_2q_2} \Big(C_1(\mu_b) O_1^{q_1q_2q_3} + C_2(\mu_b) O_2^{q_1q_2q_3} \Big) + \text{h.c.}$

-trivial renormalization of effective operators es with γ_5 in dimensional regularisation

NONLEPTONIC DECAYS AT NNLO: CHALLENGES

 $\mathbf{\Gamma}$

Four loop master integrals Non-
depending on
$$\rho = m_c/m_b$$
 Issue

 $\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{q_1, q_2 = u, c} \sum_{q_2 = d, s} \lambda_{q_1 q_2 q_2} \Big(C_1(\mu_b) O_1^{q_1 q_2 q_3} + C_2(\mu_b) O_2^{q_1 q_2 q_3} \Big) + \text{h.c.}$

-trivial renormalization of effective operators es with γ_5 in dimensional regularisation

DIVIDE ET IMPERA

STRATEGY

- > Attack the more complicated nonleptonic decays $b \rightarrow c\bar{u}d$ and $b \rightarrow c\bar{c}s$ with "Expand & match" method. Solve issue with γ_5 and renormalization.
- ► Update predictions for $\Gamma(B_a)$

► Warm up exercise: recalculate $b \rightarrow c l \bar{\nu}_l$ at NNLO with "Expand & match" method. Compare and validate with known results in the literature. MF, Lange, Schönwald, Steinhauser JHEP 09 (2021) 152

NUMERICAL EVALUATION OF MASTER INTEGRALS

Solving master integrals: method of differential equations

Kotikov, Phys. Lett. B 254 (1991) 158; Gehrmann, Remiddi, Nucl. Phys. B 580 (2000) 485

[and $\epsilon = (d - 4)/2$]

F. Moriello, JHEP 01, 150 (2020).

MF, Lange, Schönwald, Steinhauser JHEP 09 (2021) 152

Hidding, Comput.Phys.Commun. 269 (2021) 108125

Armadillo, Bonciani, Devoto, Rana, Vicini, Comput.Phys.Commun. 282 (2023) 108545

APPLICATIONS

Several approaches

- DESS Lee, Smirnov, Smirnov, JHEP 03 (2018) 008

Hidding, Comput.Phys.Commun. 269 (2021) 108125

Armadillo, Bonciani, Devoto, Rana, Vicini, Comput.Phys.Commun. 282 (2023) 108545

Expand and match

MF, Lange, Schönwald, Steinhauser JHEP 09 (2021) 152

Heavy-quark form factors at $O(\alpha_s^3)$

MF, Lange, Schönwald, Steinhauser Phys.Rev.Lett. 128 (2022) 17; Phys.Rev.D 106 (2022) 3, 034029; Phys.Rev.D 107 (2023), 094017

also application to NRQCD

Egner, **MF,** Lange, Piclum, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 5, 054033, Phys.Rev.D 105 (2022) 11, 114007

Fix all external kinematics to numerical values s = 2, t = 1/10, m = 1, etc

Precise numerical evaluation of boundary conditions

WARM UP: SEMILEPTONIC DECAYS AT NNLO

Egner, Fael, Schönwald, Steinhauser, JHEP 09 (2023) 112

- Solve for the imaginary part of master integrals with "Expand & match"
- Compare with asymptotic expansion in the limit $\rho \rightarrow 0$ Czarnecki, Pak, Phys.Rev.D 78 (2008) 114015

- Analytic boundary conditions can be easily calculated in the limit $\rho \rightarrow 1(m_c \simeq m_b)$
- "Expand and match" allows to extrapolate the solution at $\rho = 0$

Egner, Fael, Schönwald, Steinhauser, JHEP 09 (2023) 112 asymptotic expansion from: Czarnecki, Pak, Phys.Rev.D 78 (2008) 114015

- Analytic boundary conditions can be easily calculated in the limit $\rho \rightarrow 1(m_c \simeq m_b)$
- "Expand and match" allows to extrapolate the solution at $\rho = 0$

Egner, Fael, Schönwald, Steinhauser, JHEP 09 (2023) 112 asymptotic expansion from: Czarnecki, Pak, Phys.Rev.D 78 (2008) 114015

Our result manifests a mass singularity, what is going on here?

INTERLUDE: FIVE-BODY DECAY OF THE MUON

Search for CLFV at Mu3e experiment $\rightarrow e^+e^-e^+$

Dominant source of background

 $\rightarrow e^+e^-e^+\bar{\nu}_{\rho}\nu_{\rho}$

i)

NLO CORRECTIONS TO FIVE-BODY DECAY

Fael, Greub, JHEP 01 (2017) 084

> Very stringent selection cuts on m_{123}

► QED corrections can reach 15-20% effect

FIVE-BODY DECAY OF THE BOTTOM

Threshold for 3 charm quarks

Egner, Fael, Schönwald, Steinhauser, JHEP 09 (2023) 112

NONLEPTONIC DECAYS AND γ_5

 $\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{q_{1,3}=u,c} \sum_{q_2=d,s} \lambda_{q_1q_2q_2} \left(C_1(\mu_b) O_1^{q_1q_2q_3} + C_2(\mu_b) O_2^{q_1q_2q_3} \right) + \text{h.c.}$

Traditional basis

Buras, Weisz, NPB 333 (1990) 66

$$O_{1}^{q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu}P_{L}b^{\beta})(\bar{q}_{2}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\alpha}),$$

$$O_{2}^{q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu}P_{L}b^{\alpha})(\bar{q}_{2}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\beta}),$$

 $\simeq \operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{5})\operatorname{Tr}(\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{5})$

Fierz identity in d = 4

 $O_{1}^{q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu}P_{L}b^{\beta})(\bar{q}_{2}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\alpha})$ $= (\bar{q}_{2}^{\alpha}\gamma^{\mu}P_{L}b^{\alpha})(\bar{q}_{1}^{\beta}\gamma_{\mu}P_{L}q_{3}^{\beta}) = O_{2}^{q_{2}q_{1}q_{3}}$

$$\Gamma^{q_1 q_2 q_3}(\rho) = \tilde{\Gamma}^{q_1 q_2 q_3}(\rho) \Big|_{\tilde{C}_1 \to C_2, \tilde{C}_2 \to \tilde{C}_3}(\rho) \Big|_{\tilde{C}_1 \to C_2, \tilde{C}_3}(\rho) \Big|_{\tilde{C}_1 \to C_2, \tilde{C}_3}(\rho) \Big|_{\tilde{C}_1 \to C_3, \tilde{C}_3}(\rho) \Big|_{\tilde{C}_3}(\rho) \Big|_{\tilde{C}_$$

PRESERVING FIERZ IDENTITY IN $d \neq 4$

- ► Fierz identity can be restored order by order in perturbation theory
- Use definition of evanescent operator which preserves a symmetric ADM Buras, Weisz, NPB 333 (1990) 66

 $\gamma_{11} = \gamma_{22} \qquad \gamma_{12} = \gamma_{21}$

► Equivalent to require that $O_+ = (O_1 \pm O_2)/2$ do not mix under renormalization.

EVANESCENT OPERATORS

 $E_{1}^{(1),q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu_{1}\mu_{2}\mu_{3}}P_{L}b^{\beta})(\bar{q}_{2}^{\beta}\gamma_{\mu_{1}\mu_{2}\mu_{3}}P_{L}q_{3}^{\alpha}$ $E_{2}^{(1),q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu_{1}\mu_{2}\mu_{3}}P_{L}b^{\alpha})(\bar{q}_{2}^{\beta}\gamma_{\mu_{1}\mu_{2}\mu_{3}}P_{L}q_{3}^{\beta}$ $E_{1}^{(2),q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}\mu_{5}}P_{L}b^{\beta})(\bar{q}_{2}^{\beta}\gamma_{\mu_{1}\mu_{2}\mu_{3}\mu_{4}})$ $E_{2}^{(2),q_{1}q_{2}q_{3}} = (\bar{q}_{1}^{\alpha}\gamma^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}\mu_{5}}P_{L}b^{\alpha})(\bar{q}_{2}^{\beta}\gamma_{\mu_{1}\mu_{2}\mu_{3}\mu_{4}})$

$\hat{\gamma}^{(2)}$ in the CMM basis

Chetyrkin, Misiak, Munz, hep-ph/9711280; Gorbahn, Heisch, hep-ph/0411071

$$B_1 = -\frac{4384}{115} - \frac{38944}{115}$$
$$B_2 = -\frac{38944}{115} - \frac{115}{115} - \frac{115}{115$$

 $\hat{\gamma}^{(2)}$ in the Traditional basis **Impose** $\gamma_{11} = \gamma_{22}, \gamma_{12} = \gamma_{21}$ $-\frac{32}{5}n_f + A_2\left(\frac{10388}{115} - \frac{8}{5}n_f\right)$ $-\frac{32}{5}n_f + A_2\left(\frac{19028}{115} - \frac{8}{5}n_f\right)$

RESULTS IN THE ON SHELL SCHEME

Egner, Fael, Schönwald, Steinhauser, JHEP10(2024)144

Coefficient of $\alpha_s(m_b)/\pi$

Note: the functions G_{ii} are scheme dependent!

Coefficient of $(\alpha_s(m_b)/\pi)^2$

 μ_b

Egner, Fael, Schönwald, Steinhauser, JHEP10(2024)144

UPDATING THE LIFETIMES OF B MESONS

Egner, MF, Lenz, Piscopo, Rusov, Schönwald, Steinhauser, in preparation

 $m_b^{\text{kin}}(1 \text{ GeV}) = 4.573 \pm 0.018 \text{ GeV}$ $\overline{m}_c(3 \text{ GeV}) = 0.895 \pm 0.010 \text{ GeV}$

CONCLUSIONS

- \succ Calculation of the NNLO QCD corrections to nonleptonic decays (O_1 and O_2)
- - Numerical methods for solving master integrals
 - Auxiliary mass flow (AMFlow)
- > Quite significant reduction of the theoretical uncertainties from scale variation
- SOON: update of the lifetime predictions
- > Improved accuracy opens the possibility to use $\tau(B)$ in the global fits for V_{ch}

This calculation was made possible by recent developments in multi-loop calculation

This research was supported by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 101065445 - PHOBIDE.

