

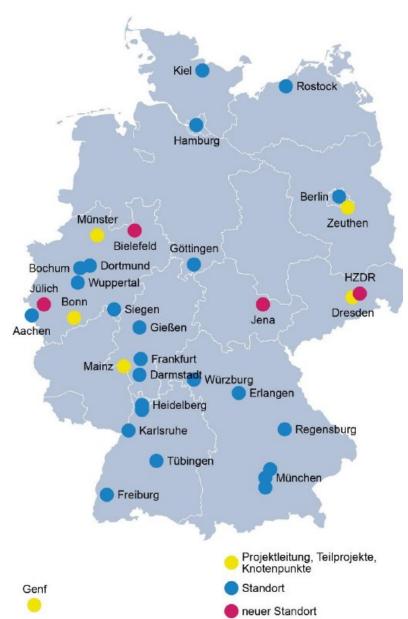
Foto: © CNAF/LNGS-INFN "Blick auf das Innere des 400-kV-Beschleunigers LUNA. Mit diesem Experiment werden die wichtigsten Kernfusionen im Inneren der Sonne im Labor simuliert."

Forschung trifft Schule @home

Lehrkräftefortbildung

Astroteilchenphysik – LNGS Edition

Herzlich Willkommen!


Philipp Lindenau, Steffen Turkat, Matthias Junker, Matthias Laubenstein

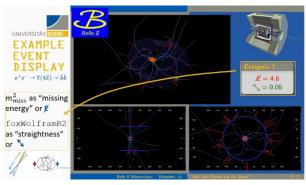
Online | 24.10.2024

Netzwerk Teilchenwelt

- Über 30 Standorte + CERN
 - Leitung: TU Dresden
 - Seit 2010
- Netzwerk zwischen
 - Wissenschaftlern
 - Jugendlichen & Studierenden
 - Lehrkräften

Netzwerk Teilchenwelt

- ~ 150 Vermittler:innen (engagierte junge Wissenschaftler:innen)
- ~ 4.000 Jugendliche und Lehrkräfte nehmen pro Jahr an unseren Veranstaltungen teil
- Seit 2010 Teilchen- und Astroteilchenphysik, seit 2020 auch Hadronen- und Kernphysik
- Gemeinsames Ziel: Forschung erlebbar machen!



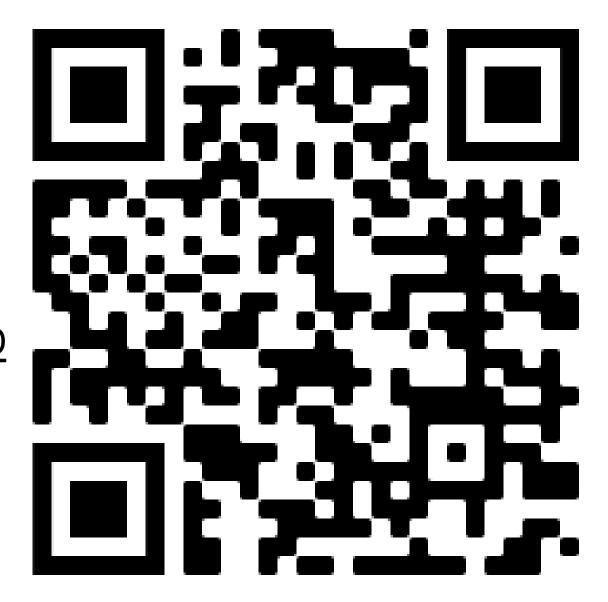
Aktivitäten für Jugendliche

Basisprogramm: Masterclasses

- Eintägig, an Schulen, Unis, Schülerlaboren, Museen etc.
- Einführende Vorträge
- Analyse von Originaldaten
 - Teilchenphysik (z. B. LHC, Belle II)
 - Astroteilchenphysik (z. B. IceCube, Pierre-Auger-Observatorium)
 - Kern- und Hadronenphysik (z. B. ALICE, Hadronentherapie)
- Ergebnis bringt Erkenntnisgewinn oder beantwortet eine anfangs gestellten Forschungsfrage
- Jugendliche treffen role models
- ► In Präsenz oder online als Masterclass@home

Forschung trifft Schule

- Kooperation mit der Dr. Hans Riegel-Stiftung
- Basisprogramm:
 - 2-tägige Fortbildung
- Vertiefungsprogramm:
 - Jährlich: CERN Summer School
- Digitale Fortbildungen, z B.:
 - Von der Kollision zur Entdeckung
 - Astroteilchenphysik & Cosmic@Web
 - Follow-Up-Veranstaltung zur Teilchenphysik in der Unterrichtspraxis: 05.12.2024



Warm-Up

Was fällt euch zum Wort "Astroteilchenphysik" ein? Welche Begriffe oder Phänomene verbindet ihr damit?

https://www.menti.com/2eethr7ttp

Welche Teilchen der kosmischen Strahlung kommen am häufigsten an der Erdoberfläche an?

μ

Myonen

p

Protonen

Was ist schwerer?



Elektron

Positron

Was ist schwerer?

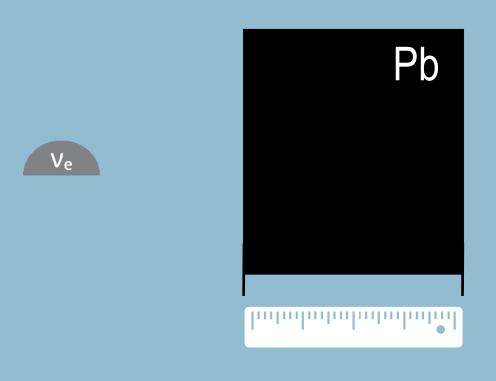
e⁻

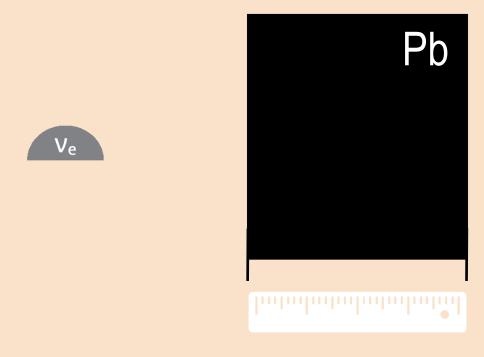
~ 0,511 MeV/c²

~ 0,511 MeV/c²

Welche Teilchen haben mehr Energie?

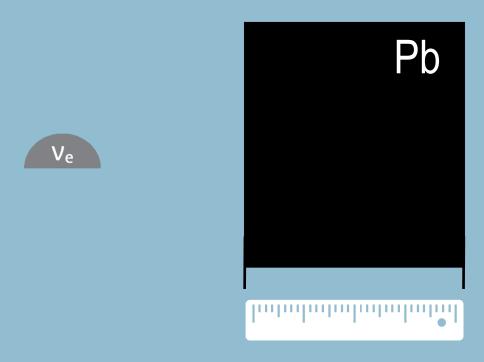
Welche Teilchen haben mehr Energie?




 $7 \text{ TeV} = 10^{12} \text{ eV}$

bis zu 10²⁰ eV

Was ist die mittlere Reichweite eines solaren Neutrinos in Blei?



ca. 1 Lichtjahr

wenige Zentimeter

Was ist die mittlere Reichweite eines solaren Neutrinos in Blei?

ca. 1 Lichtjahr

Neutrinos aus der Sonne haben typischerweise Energien von einigen **MeV**

$$\Rightarrow d_{Blei} = 1.5 \cdot 10^{16} m$$

Zum Vergleich:

Ein Proton mit einigen **GeV** hat in Blei eine Reichweite von ca. **10 cm**!