Flight Simulator (DFS & WFS) in the ATF LINAC and ATF2 EXT

DEPARTMENT OF PHYSICS

P. Korysko*, A. Latina

CLIC Project Meeting #46

September 3, 2024

*pierre.korysko@cern.ch

Outline

- ATF2 @ KEK: Motivation and Objectives
- ATF Matlab Flight Simulator
- DFS and WFS in the LINAC
- DFS and WFS in the EXT
- ATF2 Python Flight Simulator

The ATF2 at KEK

The Accelerator Test Facility 2 (ATF2)

ATF2 studies

CLIC related studies in ATF2:

- Final Focus System (FFS) studies : local chromaticity correction scheme.
- Wakefields Mitigation Tools implementation.
- Beam Instrumentation tests (Cavity-BPMs, OTR/ODR beam profile monitors, etc).
- Automatic Beam-Based Alignment (BBA) and tuning procedures (DFS, WFS, etc) tests.
- R&D work on the extraction kicker from the DR.

Table : Beam and optics parameters for ATF2 beamline.

Parameter	Symbol	Value
Length of ATF2	L	90 m
Beam energy	E	$1.28~{\rm GeV}$
Bunch population	N_e	$1.0 imes 10^{10}$
Beta functions at IP	β_x^*/β_u^*	40 mm/0.10 mm
Beam sizes at IP	σ_x^*/σ_u^*	$8.9 \ \mu m/37 \ nm$
Bunch length	σ_z	$7 \mathrm{mm}$

Automatic Beam-Based Alignment

DFS simultaneously corrects the orbit, x_i , and minimizes the difference between the nominal and a dispersive trajectory, $x_{\Delta E,i}$. This corresponds to minimizing:

$$\chi^2 = \sum_{\text{bpms}} x_i^2 + \omega^2 \sum_{\text{bpms}} \left(x_{\Delta E,i} - x_i \right)^2 + \beta^2 \sum_{\text{corrs}} \theta_j^2$$

which is equivalent to solving the system of equations:

$$\left(\begin{array}{c} \mathbf{x} \\ \omega(\mathbf{x}_{\Delta E} - \mathbf{x}) \\ \mathbf{0} \end{array}\right) = \left(\begin{array}{c} \mathbf{R} \\ \omega \mathbf{D} \\ \beta \mathbf{I} \end{array}\right) \left(\begin{array}{c} \theta_1 \\ \vdots \\ \theta_m \end{array}\right)$$

It is a least-square problem that can be solved using an SVD.

R and **D** are the response matrices. The free parameter ω accounts for the relative weight of the orbit w.r.t. the dispersive term; β is a regularization parameter.

with
$$R_{ij} = \frac{\partial y_i}{\partial \theta_j}$$

 $D_{ij} = R_{\Delta E, ij} - R_{ij}$
 $\omega^2 = \frac{\sigma_{\text{bpm resolution}}^2 + \sigma_{\text{bpm position}}^2}{2\sigma_{\text{bpm resolution}}^2}$

Results in the ATF2 extraction line (2019)

Figure: Schematic of the Dispersion Free Steering correction.

Figure: Schematic of the Wakefields Free Steering corrections.

Figure: Measurement: impact of DFS and WFS on the vertical beam size at the IP.

ATF Matlab Tools: Flight Simulator

ATF LINAC Matlab Flight Simulator

The Matlab Flight Simulator **SYSID** (System Identification) scripts were updated to work on the **ATF LINAC**.

TR(LT)										_	×	
LINAC/BT Steering-Magnets												
	File	Set	I(A)	Status			File	Set	I(A)	Status		
ZH1L	1.60	1.60	1.63	ON		ZX10T	-0.50	-0.50	-0.68	ON		
ZV1L	0.33	0.33	0.35	ON		ZV10T	0.00	0.00	0.00	OFLIN		
ZV2L	0.00	0.00	0.00	ON		ZX11T	0.81	0.81	0.66	ON		
ZH2L	0.05	0.05	0.06	ON		ZH10T	0.00	0.00	0.00	OFLIN		
ZV3L	0.00	0.00	0.00	ON		ZV11T	0.00	0.00	-0.70	OFLIN		
ZH3L	-0.01	-0.01	-0.00	ON		ZX12T	0.90	0.90	0.92	ON		
ZH4L	-0.62	-0.62	-0.63	ON		ZY20T	0.34	0.34	0.35	ON		
ZV4L	-0.51	-0.51	-0.51	ON		ZY21T	-0.25	-0.25	-0.26	ON		
ZH5L	0.00	0.00	0.01	ON		ZY22T	-1.26	-1.26	-1.28	ON		
ZV5L	0.00	0.00	0.01	ON		ZY23T	-1.47	-1.47	-1.50	ON		
ZH6L	-0.07	-0.07	-0.07	ON		ZX30T	0.00	0.00	0.00	ON		
ZV6L	-0.23	-0.23	-0.22	ON		ZX31T	0.00	0.00	0.00	ON		
ZH7L	-0.35	-0.35	-0.36	ON		ZV30T	0.09	0.09	-0.00	ON		
ZV7L	0.00	0.00	-0.00	ON		ZH30T	-1.79	-1.79	-1.88	ON		
ZH8L	0.10	0.10	0.10	ON		ZX32T	2.05	2.05	1.98	ON		
ZV8L	-0.13	-0.13	-0.14	ON		ZV40T	-1.50	-1.50	-1.58	ON		
ZH9L	-0.39	-0.39	-0.40	ON		ZH40T	-2.10	-2.10	-2.18	ON		
ZV9L	-0.08	-0.08	-0.09	ON		ZX50T	1.29	1.29	1.32	ON		
ZH10L	-0.22	-0.21	-0.23	ON		ZX51T	-1.70	-1.70	-1.74	ON		
ZV10L	-0.41	-0.41	-0.42	ON		ZX52T	0.93	0.93	0.85	ON		
ZH11L	0.09	0.09	0.10	ON		ZV50T	0.38	0.38	0.38	ON		
ZV11L	0.38	0.38	0.40	ON		ZH50T	1.35	1.35	1.39	ON		
ZH12L	0.04	0.04	0.04	ON		ZV51T	0.08	0.08	0.08	ON		
ZV12L	-1.42	-1.42	-1.44	ON								
ZV13L	-0.69	-0.69	-0.70	ON		SET F	ILE set	24may21	_1646.d	at		
ZH1P	0.00	0.00	-0.08	ON								
ZV1P	0.00	0.00	-0.15	ON			RE	SET				
ZH2P	0.00	0.00	-0.20	ON								
ZV2P	0.00	0.00	-0.07	ON								

CERN SYSID ATF2 ONLINE BBA Correctors Info new_SYSID_20240521_201020 Pattern: Z* ZH1L ٠ ZH1L Current corr: ZV 1L ZV 2L ZH2L ZV 3L Options ZH3L 7H4L N. of samples: 100 ZV 4L ZH5L Max strength: 0.06 kG*m ZV 5L ZH6L ZV 6L Cvcle mode: Repeat all ZH7L ZV 7L Horizontal excitation: ZH8L 0.4 mm ZV 8L ZH9L Vertical excitation: mm 0.3 ZV 9L ZH10L V Plot Orbits ZV 10L ZH11L ZV 11L START w. Add from... STOP

CERNBBA v0.01

Matlab BBA Interface

Beam-based Alignment Tool

DFS and WFS in the ATF LINAC

Change Energy in ATF LINAC

To change the **beam energy** in the LINAC, the **Phase** of the Klystron #1 was **increased by 5 degrees**:

ATF LINAC Response Matrices (DFS)

DFS Correction in the ATF LINAC

Good vertical dispersion correction

WFS in the ATF LINAC

To change the **beam charge** in the LINAC, the **Laser** amplitude was decreased by 20%:

ATF LINAC Response Matrices (WFS)

Response Matrices in the ATF LINAC:

R0 (0.4E10 e-)

R1 (0.2E10 e-)

WFS Correction in the ATF LINAC

WFS correction convergences for both X and Y

DFS and WFS in the ATF2 EXT

Change Energy in ATF2 EXT

To change the **beam energy** in the EXT, the **DR Delta-F was decreased by 2 kHz**:

ATF2 EXT Response Matrices (DFS)

Response Matrices in the ATF2 EXT:

R0 (nominal energy)

R1 (lower energy)

DFS Correction in ATF2 EXT

Good Horizontal dispersion correction

ATF2 EXT Response Matrices (WFS)

Response Matrices in the ATF2 EXT:

R0 (0.2E10 e-)

R1 (0.4E10 e-)

ATF Python Flight Simulator

Python Flight Simulator

CLIC Simulations / Flight Simulator Ajouter aux favoris 0 . . Flight Simulator F -O- 43 validations % 1 branche Ø étiquette Update a6e9fceb 🖺 Andrea Latina rédigé dans 37 minutes ᢞ master ∨ flight-simulator Historique Rechercher un fichier Code ~ Nom Dernière validation Dernière mise à jour ComputeResponseMatrix.py dans 37 minutes Update DFS_Correction.py Update il v a 9 minutes DFS_WFS_Correction.py Update il y a 9 minutes InterfaceATF2_Ext.py Update il y a 9 minutes InterfaceATF2_Linac.py Update il y a 9 minutes Response.py Update il y a 9 minutes il y a 3 heures RestoreState.pv Update State.py Update il y a 19 heures SysID.py Update il y a 2 heures P SysID_GUI.py Update il y a 2 jours

https://gitlab.cern.ch/clic-simulations/flight-simulator

Python Response Matrices (DFS)

Movable Wakefield Source

Movable Wakefield Source

Installed a movable wakefield source to generate targeted wakefield kick

- Evaluate the acted wakefield kick at the single wakefield source
 - Measure the beam orbit change downstream from the wakefield source after the wakefield source is moved

Conclusions & Plans

- Matlab Flight Simulator (FS), DFS and WFS gave good results in LINAC and EXT.
- New Framework in Python being implemented (to replace Matlab).
- To do: Python FS GUI in PyQT6 and interface with simulation (RF-Track).
- To do: Apply BBA (DFS & WFS) in the DR.
- To do: Use, optimize and apply correction with the Movable Wakefield Source.

Thank you

