

Vacuum breakdown and field emission using CERN's pulsed DC systems.

Victoria Madeleine Bjelland, Walter Wuensch, Morten Kildemo

03/09/2024

CLIC Project

What is a breakdown?

RF and DC breakdown investigation systems.

Observations of Breakdowns

Conditioning and material testing

THE CLIC PROJECT

Compact Linear Collider

- Electron positron collider
- 3 phase build

3TeV collision energy

CLIC STRUCTURES

- Why can't we have unlimited acceleration?
- Due to breakdowns!

CLIC STRUCTURES

100MV/m acceleration

250MV/m surface electric field.

BDR ~1e-7

Limited by breakdowns!

CLIC Project

What is a breakdown?

RF and DC breakdown investigation systems.

Observations of Breakdowns

Conditioning and material testing

What is a breakdown?

- When applying high surface electric field, a discharge will occur.
- Atoms and electrons flow out from an emitting area.
- Ionization leads to a plasma avalanche!
- Disturbs/kick the beam
- Breakdowns leaves physical damage on the surface

How do breakdowns evolve?

- Atoms and electrons starts emitting from a spot on the cathode surface.
- Unknown why it occurs.
- Electrons ionize neutrals, are accelerated back at the cathode surface.
- Plasma sheath results in a huge increase in emitted current.
- The electron current collapses the field.

Figure 4.1.: Important stages in the ignition of a vacuum arc.

CLIC Project

What is a breakdown?

RF and DC breakdown investigation systems.

Observations of Breakdowns

Conditioning and material testing

RF Structure Testing

 CLIC has several klystron based X-band test stands

 Testing prototype accelerating structures+ other RF components.

 We can complement the system!

CERN's Large Electrode System

Large Electrode System (LES)

Small vacuum chamber

Replacable, simple electrodes

HV pulses via a Marx generator.

Adaptabel diagnostics.

CERN's LES

- Anode and cathode are sandwhiched together
- Achieve 20-100 um spacing.
- Equivalent to RF testing components.

LES Circuit

CLIC Project

What is a breakdown?

RF and DC breakdown investigation systems.

Observations of Breakdowns

Conditioning and material testing

Experimental Signature of Breakdowns

- Incoming wave
- Transmitted wave
- Reflected wave

- Breakdowns increase the reflected wave.
- Can find position along the z plane.

Experimental Signature of Breakdowns

- LES ≈ 360pF Capacitor
- Breakdown signature:
 - Fall in voltage
 - Increase in current

 In the LES system, you can also observe it with pressure and light!

Experimental Signature of Breakdowns

2 CCD (charged couple device) cameras are used to localize breakdowns in realtime pulse pulse.

CLIC Project

What is a breakdown?

RF and DC breakdown investigation systems.

Observations of Breakdowns

Conditioning and material testing

Conditioning

Conditioning examples for td31s, conditioning of Cu in the LES and flat running conditioning in the LES system.

Voltage holding for materials

Helps us characterize and compare different materials to find the most appropriate for field holding.

Testing of exotic materials

AM Electrodes

[14]

Example of breakdown localization

CLIC Project

What is a breakdown?

RF and DC breakdown investigation systems.

Observations of Breakdowns

Conditioning and material testing

Field Emission

When high electric fields are applied to a surface, it lowers the potential barrier, enablign electrons to escape.

Predictable using Fowler-Norhdeim equation

Works without correction factor on nanoscopic scales

Field Emission Measurement

- We connect our system to an extra circuit to measure the field emission.
- We record it using an oscilloscope, controle it using a multimeter and can adjust the current using our system resistance.

Field Emission Measurement

- IV curves of materials
- Needs a field enhancement factor β to work.

Light during Field Emission

Light seen during field emission

Light Emitter Localization

Is the field enhancment factor coming from certain points on the surface or uniformly over the surface?

Questions?

References

- [1]https://cds.cern.ch/journal/CERNBulletin/2012/43/News%20Articles/1484855
- [2] https://accelconf.web.cern.ch/e08/papers/thxm01.pdf
- [3] https://cds.cern.ch/record/1346987/files/mop068.pdf
- [4] https://home.cern/science/accelerators/compact-linear-collider
- [5] https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2024.1308455/full
- [6] https://indico.cern.ch/event/1212689/contributions/5377907/
- [7] https://www.duo.uio.no/handle/10852/52944
- [8] https://scandinovasystems.com/wp-content/uploads/2024/05/xboxscandinovappt-v2.pdf
- [9] https://cds.cern.ch/record/2871883
- [10] https://www.sciencedirect.com/science/article/pii/S0168900219314238
- [11]https://indico.slac.stanford.edu/event/7467/contributions/6120/attachments/2893/8043/Marca%2002.pdf
- [12] https://inspirehep.net/files/0eebce8e1bd94325d3845e845e425409
- [13] https://accelconf.web.cern.ch/ipac2023/pdf/WEZG2_talk.pdf
- [14] https://indico.cern.ch/event/1298949/contributions/5783848/
- [15] https://www.intechopen.com/chapters/16390
- [16] https://cds.cern.ch/record/1330346

