

AWAKE Run 2c/d Kick-Off Meeting

Edda Gschwendtner

16 July 2024, CERN

AWAKE – Organization

AWAKE is an International Collaboration

AWAKE Organizational Structure

Spokesperson: Patric Muggli Deputy: Matthew Wing Collaboration Board Chair: Allen Caldwell Technical Coordinator: Edda Gschwendtner CERN AWAKE Project Leader: Edda Gschwendtner Physics and Experiment Coordinator: Patric Muggli Simulation Coordinator: Alexander Pukhov CNGS Dismantling Project Leader: Ans Pardons Run Coordinator: Michele Bergamaschi

AWAKE MoU: between CERN and Institutes \rightarrow in-kind contributions **Addendum to MoU** for any new institute, PJAS, new work program **Publication and Speakers Committee**

CERN AWAKE Project Organization

CERN AWAKE Project Team

Coordination Package:

- **CP1: SPS Beam, RF Timing, Synchronization,** Benjamin Woolley, SY **CP2: Proton and Electron Beam Lines,** Vittorio Bencini, SY
- CP2: Proton and Electron Beam Lines, Vittorio Bencini,
- CP3: Electron Source System, Steffen Doebert, SY
- CP4: Infrastructure, Global Integration and Installation, Ans Pardons, EN
- CP5: Laser Beam System, Eduardo Granados, SY
- CP6: Plasma Wakefield Experiment, Marlene Turner, BE
- CP7: Beam Instrumentation, Stefano Mazzoni, SY
- CP8: Scalable Plasma Cell R&D, Alban Sublet, TE

Coordination Package Leaders:

- →Coordinate Work Packages that are associated to the areas and systems of the CP
- \rightarrow Coordinate the institutes' Work Packages
- → Regular meetings, EDMS, indico
- \rightarrow Report in project team meetings

WP	WP Name	CERN	WP Leader	Group
WP1	SPS Beam		Heiko Damerau	SY-RF
WP2	Synchronous Clock Distribution and Fast Timing		Ben Woolley	SY-RF
WP3	Laser Synchronisation		Ben Woolley	SY-RF
WP4	Electron LLRF		Ben Woolley	SY-RF
WP5	Proton Line		Vittorio Bencini	SY-ABT
WP6	Electron Line		Vittorio Bencini	SY-ABT
WP7	Electron Source and H	ligh Power System	Steffen Doebert	SY-RF
WP8	Shielding, Dumps		Ans Pardons	EN-ACE
WP9	Supports		Ans Pardons	EN-ACE
WP10	Laser Beam Line		Eduardo Granados	SY-STI
WP11	UV laser for e-source		Eduardo Granados	SY-STI
WP12	DAQ		Edda Gschwendtner	BE-ABP
WP13	Beam instrumentation	۱	Stefano Mazzoni	SY-BI
WP14	Helicon Plasma Cell @	CERN	Alban Sublet	TE-VSC
WP15	Discharge Plasma Cell	@ CERN	Alban Sublet	TE-VSC
WP16	Simulations		John Farmer	BE-ABP
WP17	Magnets		Philip Schwarz	TE-MSC
WP18	Power Converteres		Gilles Le Godec	SY-EPC
WP19	Vacuum		Jose Ferreira Somoza	TE-VSC
WP20	Interlock		Richard Mompo	TE-MPE
WP21	Mechanical Design		Nicolas Chritin	EN-MME
WP22	Civil Engineering		Alejandro Martinez Selles	SCE-DOD
WP23	Cooling and Ventilatio	'n	Michele Battistin	EN-CV
WP23.1	Cooling and Ventilatio	n: Design	Alejandro Rodriguez	EN-CV
WP23.1	Cooling and Ventilatio	n: Operation	Jani Lehtinen	EN-CV
WP24	Electrical Services		Mickael Lonjon	EN-EL
WP24.1	Electrical Services: Ele	ctrical Systems	Mickael Lonjon	EN-EL
WP24.2	Electrical Services: Cal	oling	Guillaume Gros	EN-EL
WP24.3	Electrical Services: De	cabling	Christian Bernard	EN-LE
WP25	Transport and Handlin	Ig	Caterina Bertone, Jean-Louis Grenard	EN-HE
WP26	Access		Didier Vaxelaire	EN-AA
WP27	Fire and Gas		Silvia Grau, Denis Raffourt	EN-AA
WP28	Survey		Jean-Frederic Fuchs	BE-GM
WP29	Ethernet, Wifi, GSM, T	ETRA	Maryse da Costa	IT-CS
WP30	Control		Marine Gourber-Pace	BE-CO
WP31	Radiation Protection		Claudia Ahdida	HSE-RP
WP31.1	Radiation Protection:	Simulations	Claudia Ahdida	HSE-RP
WP31.2	Radiation Protection:	RP Monitoring	Christelle Saury, Claudia Ahdida	HSE-RP
WP§2Ida O	and wendtner, CERN	V	Marlene Turner, Michele Bergamaschi	BE-ABP

AWAKE Work Packages

Collaboration Institutes

WPs/Tasks	Institutes		
Vapour Source	MPP, Uni Marburg		
Helicon Plasma Source	IPP Greifswald, SPC-EPFL, Univ. of Wisconsin		
Discharge Plasma Source	IST, Imperial College, Oxford		
Laser	MPP, Wigner Institute		
Electron-source, LLRF	Univ. of Uppsala, Univ. of Lancaster		
Beam Diagnostics	UCL, MPP, Univ. of Manchester, Univ. of Liverpool, TRIUMF, JAI		
Simulations	Budker INP, NSU, IST Lisbon, HHU Duesseldorf, UNIST, IPP Munich, UK		
Experiment, Analysis	MPP, Wigner, UK		

AWAKE – Program

AWAKE has a Well-Defined Program

AWAKE Run 1 (2016 - 2018): Proof-of-Concept:

- ✓ Demonstrated seeded self-modulation of the proton bunch and drive strong wakefields
- ✓ Accelerate externally injected electrons to 2 GeV

AWAKE Run 2 (2021 – 2033): Towards an Accelerator:

- Accelerate an electron beam to high energies (gradient of 0.5-1GV/m)
- > while controlling the *electron beam quality (~10 mm-mrad emittance, 10% energy spread)*
- demonstrate scalable plasma source technology.

Once AWAKE Run 2 is demonstrated: Possibility for first application of the AWAKE-like technology.

→ develop physics case for particle physics experiments

A WAKE

AWAKE Run 2c/d

AWAKE Run 2c/d has been approved in this year's MTP! (CNGS dismantling was approved in 2022)

An amount of 10 MCHF is allocated in addition to **AWAKE** for the construction, during LS3, of the necessary hardware (e.g. second electron line) to be deployed in Runs 2c and 2d. Additional funds may be necessary for these runs.

"Dynamic allocation"

AWAKE Run 2

Accelerate an electron beam to high energies, while controlling the electron beam quality and demonstrate scalable plasma source technology.

•

AWAKE

V Run 2a (2021-2022): CONTROL: demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch

now -> Run 2b (2023-2024): STABILIZATION: maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density

AWAKE Run 2 Well-Defined Scientific Roadmap – Milestones

✓ Run 2a (2021-2022): CONTROL: demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch

now -> Run 2b (2023-2024): STABILIZATION: maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density

→ (2025-2027): CNGS dismantling, CERN Long Shutdown LS3, installation of Run 2c

→ Run 2c (2028-2031): QUALITY: demonstrate *electron acceleration and emittance control of externally injected electrons*.

→ Run 2d (2032- LS4): SCALABILITY: development of scalable plasma sources with sub-% level plasma density uniformity.

A IVA KE

AWAKE Run 2 – Integration

AWAKE Run 2c – Ongoing Studies

→ Studies, design and prototyping already advancing well for several experimental elements of Run 2c

AWAKE

AWAKE Run 2d: Demonstrate Scalable Plasma Sources

AWAKE – Planning

 \rightarrow In case LS3 is shifted by one year, also CNGS dismantling would shift by 1 year, ie proton run in 2025!

- AWAKE Run 2c,d has been approved in MTP!
 Start full-swing with preparations for Run 2c!
- Decision about delay of LS3 required in September 2024!
- With CERN's approval, funding requests of collaborating institutes can go ahead.