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EARLY MATTER DOMINATION

» Arguably, most generic departure from early radiation
domination

» Naturally realized in many well-motivated theories:
» coherent scalar fields
» post-inflationary reheating
» moduli
» saxions, axions
» relic thermal states
» hidden sector dark matter models

» RH neutrinos in neutral naturalness models



OBSERVABLE CONSEQUENCES

> |mpact on terrestial signatures of dark matter

» thermal production: entropy injection, direct DM
production

» ALPs: altered cosmic history

» |mpact on the matter power spectrum
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Impact on stochastic gravitational wave
background

> best discovery prospects require nonlinear dynamics
and/or enhanced primordial power spectra



PARAMETRICS

» Phenomenologically, onset and duration of EMDE can be
taken as free parameters

» EMDE generically ends when metastable particle decays
» results in sizeable entropy dump
» "gradual” decay: I' ~ H__4

» Coherent scalar fields may offer more exotic possibilities

» formation and decay of solitonic objects (oscillons, Q-balls, ...):
abrupt decay

> time-dependent eos (e.g., axion kination): no entropy
generation



THERMAL DM PRODUCTION AND EMDES

> |t DM abundance set by couplings to SM: entropy injection
can have major impact on detection prospects

> Freeze-out: more DM = weaker couplings = can be
consistent with stringent DD (ID, collider) bounds

» Freeze-in: more DM = stronger couplings = testability at
colliders (long-lived particle searches)

Freeze-out/in during EMDE
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DM PRODUCTION AND EMDES: FREEZE-OUT

1 10! 10? 103 104
mpm / GeV

> entropy dump, direct DM
production from decays reopen
viable parameter space

» model is nearly fully excluded by
combination of DD, Higgs decays
(also indirect detection)
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DM PRODUCTION AND EMDES: FREEZE-IN

> Larger cross-sections for freeze-in can make DM-producing

orocesses visible as displaced decays at colliders
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ABUNDANCE OF AXION DARK MATTER

» predictions for axion DM also depends on cosmic history

» E.g., misalignment, temperature-independent ALP mass:
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A DARK MATTER NIGHTMARE SCENARIC
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» early universe: self-
interacting HS, SM

[HS] [SM]
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A DARK MATTER NIGHTMARE SCENARIC

» early universe: self-
interacting HS, SM

» lightest fermion in HS
ISM] naturally stable, good DM
candidate

» natural candidate for lightest
particle in dark sector: pNGB

> Yy — nrxis p-wave: no |ID

cosmic abundance of this state can

give rise to detectable consequences > cold: no detectable

departures from ACDM




EARLY MATTER DOMINATION
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» for composite metastable states, need

significantly sub-Planckian operators for pre-
BBN decays

day to SM

» fundamentals: dark photon, heavy neutral
lepton...



IMPRINT ON THE MATTER POWER SPECTRUM
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> Linear growth of DM perturbations during EMDE: d4m o

hor  KRHO

> kru = aru H (arn ) sets beginning of enhancement

» Amplitude of enhancement set by the duration of the EMDE
and/or the cutoft scale in the matter power spectrum

Truy = 1 GeV, k¢yt/kry = 40
TRH =1 GeV, kcut/kRH = 20
TRH =10 MeV, kcut/kRH = 20




THE SMALL-SCALE CUTOFF

> small-scale cutoft: microphysics

> often, from DM free streaming: esp. if DM is kinetically coupled to the radiation bath

[Gelmini & Gondolo 2008; ALE, Sinha, Watson 2016; Waldstein, ALE, Illie 2017] Oor generated from the decay of

the metastable Species [Fan, Ozsoy, Watson 2014, Miller, ALE, Murgia 2019]

> |f DM is sufficiently cold (e.g. from hidden sector), the microphysics of the
metastable species that drives the EMDE sets the cutoff

» Mass of metastable species:
suppression on scales that
enter horizon while Tgg > m
[Ganjoo, ALE, Lin, Mack 2023]

» Cannabilistic self-interactions
of metastable species
[ALE, Ralegankar, JS 2022, 2023]
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STRUCTURE DURING THE EMDE?

> |f the EMDE is sufficiently long, the metastable particles can
clump and form bound structures.

» Dark matter particles fall into these halos and then are released
when the metastable particles decay.

> The subsequent free streaming of the DM sets a new cutofft.
[Blanco, Delos, ALE, Hooper 2019; Barenboim, Blinov, Stebbins 2021; Ganjoo and Delos 2024]
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» Gravitational waves from
early halo collapse
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MICROHALOS o |
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» Earlier-forming microhalos are ALE 2015
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CONSTRAINTS ON DM ANNIRILATION WITH EMDES

» Dark matter annihilation within microhalos mimics dark matter decay
because energy output tracks DM density.

» Strongest current limits from isotropic gamma-ray background
constraints on decaying DM [Delos+ 2019, Blanco+ 2019, Ganjoo & Delos 2024].

» Dwarf galaxies could distinguish annihilation within microhalos from
decaying DM [Delos, Linden, ALE + 2019]. Delos, Linden,ALE 2019
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CONSTRAINING DM PRODUCTION IN EMDE COSMOLOGIES
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GRAVITATIONAL SEARCHES FOR MICROHALOS
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> gravitational observational prospects are still futuristic

S [Ramani, Trickle, Zurek; Delos, Linden; 10°

> pulsar timing array " .
Lee, Mitridate, Trickle, Zurek; ...]

Rs=100R (a)
default Py, d

[Diego et al; Oguri et al;

» cluster caustic microlensing Dai. Miralda-Escude]
al, Miralda-Escude

= 104}

» 20 AU-baseline radio interferometry of FRBs
[Xiao, Dai, McQuinn]
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GRAVITATIONAL WAVES FROM NONLINEAR STRUCTURE

» induced gravitational wave signature in linear theory,
generically undetectably small unless:

» faster-than-Hubble decays (oscillons, PBHs)
» enhanced primordial power spectrum

» nonlinear regime: halo collapse during EMDE; soliton
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OPEN QUESTIONS FOR DISCUSSION

» Many avenues for refinement, especially in nonlinear regimes
» microhalo formation (esp during RD) and disruption
» soliton formation and decay

> early nonlinear structure formation and maximum possible
enhancement to matter power spectrum

> Prospects for detecting enhanced microstructure gravitationally
remain somewhat futuristic

» more ideas for detection important!
» Room to further characterize gravitational wave signatures

> Interplay with baryogenesis important but generically less
directly testable



DISCUSSION: THE GAP IN THE EMDE MATTER POWER SPECTRUM

i,
. \\\:\\ mmm m = 2 TeV, TRy = 20 MeV B
. \\\\‘:rb' mm = 1 TeV, TRy = 20 MeV -
'. w7 = 500, Tpy = 100 MeV | 105
- ® ® No FS 0
- -=+ BF < 0.01
T T T v T v T T
10° 10! 102 10° 101

Ocq

Figure 14: The scale factor at which 10% of the dark matter is predicted to be bound in
halos according to Press-Schechter theory, plotted against oeq (Eq. 6.3), which quantifies the
extent to which the small-scale power spectrum is enhanced during an EMDE. The curves
are obtained by varying 7 (red and green) and m (purple) to vary o.q by varying the shape
and peak of the EMDE-enhanced power spectrum. The dashed curves show cases in which
the bound fraction at agy < 0.01, the regime in which our free-streaming cut-off prescription
is untested. The dotted line shows ajp for the same EMDE cases without the free-streaming
cut-off, which only depends on o, regardless of the power spectrum shape.



GRAVITATIONAL SEARCHES FOR MICROHALOS

» Do these microhaloes survive in galaxies?

» Probably
» an O(1) fraction are likely to survive, albeit:

> tidally stripped

» not in dense galactic bulge environments
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GRAVITATIONAL WAVES FROM HALO FORMATION | ccucncies are
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