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after inflation: a few min GAP in our cosmic history

hot thermal soup

with nuclei CMB

inflation

MIND THE GAP

L )

»
>

second /few minutes

3
>

400,000 years

N
>

|4 billion years

*image is a modification of the one produced by the PDG, 2014



after inflation: a huge energy GAP in our cosmic history

hot thermal soup
with nuclei

inflation
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*image is my modification of the one produced by the PDG, 2014

101 GeV

inflation ends

populate the universe
(reheating — Standard Model) ?
matter-antimatter asymmetry ?
dark matter ?

EW symmetry breaking

QCD phase transition
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after inflation: GAP — consequences !

hot thermal soup CMB
with nuclei
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focus on: “soon” after the end of inflation, simple models with “universal” dynamics
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some of the above phenomenology has already been covered earlier

Last 3 reviews: Allahverdi et.al (2010), MA et.al (2014), Lozanov (2019)
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reminder
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reminder

pressure G =8nG1y,

2
eq. of state w = a(t) ~x 130 +w)

density

inflationary observables

1
T(N*),nS(N*) N* D) Z(l — 3UJ)ANrad

(p)reheating observables Qow (f) x exp[—ANpaq(1 — 3w)]
Qo (f) f o< exp|—AN;aq (1 — 3w) /4]



reminder

pressure Gy =8nG1), 2
eq. of state w = , a(t) oc t30+w)
density
inflationary observables 1
T(N*), TLS(N*) N* D, Z(l — 3UJ)ANrad
(p)reheating observables Qo (f) < exp[—ANpaq(1 — 3w)]
Qo (f) f o< exp|—AN;aq (1 — 3w) /4]

Ps(k), Qam - - - fi(t, x, p) + expansion history -



modeling the end of inflation




what we “know’ about inflation (simplest case - scalar field driven inflation)
— flattened potentials

- 2 - LR | | I I
m 1 0.25F ~ Planck TT+lowP ~
4 pl 2 oo
S = /d TN —(g TR — 5(8@ — V(¢) N . Planck TT+lowP+BKP
_ _ Py w p=4 +lensing4-ext
S, 0.20 | | .
N—" .
9 &
=
T 015}
—
&
| |
o
)
%A 0.10 |
O
b
—
O
S 0.05 |
)
ik
0.00

0.95 0.96 0.97 0.98 0.99 1.00

primordial tilt (ng)

for example:
Starobinsky(1979/80), Nanopolous et. al (1983), Silverstein & Westhpal (2008), Kallosh & Linde (2013), McAllister et. al (2014) ...



end of inflation depends on ...

flattened potential PP <*

- shape of the potential (self-couplings)

» couplings to other fields

*for “model-independent” attempts see Oszoy et. al (2015)



end of inflation (ignoring couplings to other fields*)

PP <2 flattened potential

>

» shape of the potential (self couplings)

V() o |‘ < power law at minimum
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Agb ~M where potential flattens



oscillating “free” scalar field: matter-dominated expansion
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oscillating “free’ scalar field: matter-dominated expansion +“slow” gravitational instability

n—1
W — ()
y 2 n-+1
~ M
04F
0.2+
=
5 0
5
-0.2¢
—-04¢t . .
0 100 200
x[m—l]

Musoke et. al (2020

*similar to a late matter dominated universe



oscillating scalar field: self-interaction driven fast instability & “oscillon” formation

0 100 200 300 400

x[m_l]
MA (2010)
srowth-rate of fluctuations mMpl > 1
parametric resonance = expansion rate M

*without oscillons, but relevant for instabilities, see related (much) earlier work: Khlopov, Malomed & Zeldovich (1985)



expansion v

expansion v : :
self-interactions \/

self-interactions \/ . ,
gravitational int. v

gravitational int. X

MA & Mocz (2019)

* non-relativistic, Schrodinger-Poisson

MA, Easther, Finkel, Flauger & Hertzberg (201 1)



gravitational effects

stochastic gravitational wave-generation (example: Zhou et. al 2013, Kitajima et. al 2018)
primordial black hole (PBH) formation ? (Cotner et. al 2019, full GR simulations: Giblin & Tishue 2019, Kou et. al 2021)
For particle DM clustering and effects from reheating (eg. Erickcek and Sigurdsen 2011)
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gravitational implications

» gravitational waves (rapid energy density evolution)

 gravitational clustering and free-streaming (warm [Cs)

* likely negligible for inflaton, but relevant for lighter offsprings

 small scale, white-noise isocurvature perturbations

relativistic simulations non-relativistic simulations (Schrodinger-Poisson)



summary: dynamics in quadratic power law minima + wings

inflaton potential
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dynamics in different power law minima + wings

homogeneous oscillations
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n+1
Turner (1983)
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dynamics in different power law minima + wings

eq. of state
ressure

w= 2 > 1/3
density

radiation
domination

eq. of state

w — 0

matter

domination

Lozanov & MA (2016/17)



why the universality ?

- (n > 1) non-quadratic minima w = 1/3 (atter sufficient time)

/ power law at the minimum

fragmentation is inevitable

n 2> 1

rowth-rate of Huctuations
s | x 1/¢
expansion rate

+perturbations are effectively massless




e-folds to radiation domination!?

- (n > 1) nOn-quadratiC minima w = 1/3 (after sufficient time)

/ power law at the minimum

How many e-folds to radiation domination?
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Lozanov & MA (2016/17)



dynamics in different power law minima + wings
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ressure
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upper bound on duration to radiation domination (n>1)

~ Lozanov & MA (2016/17)
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* addition of other light fields, see Antusch, Figueroa, Marschall, Torrenti (2020)

* implications of CMB observations for/on reheating (Martin & Ringeval 2010, Cook et. al 2015, Munoz and Kamionkowski 2015)



time when we have radiation-like equation of state

+ transfer of energy to SM species

+ thermalized SM universe

# not necessarily



expansion history + fragmented vs. non-fragmented field

Reheating (to SM) temperature larger by 107 if fragmentation is ignored
*model dependent

Garcia & Pierre (2023)

DM abundance/mass might be affected by initial state of the field+expansion



time to bring in couplings to other fields ...
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* shape of the potential (self couplings)

mass 23 N fasowe  Yfnorewe ) fo
arane 5|23 2 | & il
wonafin n ” ' o
o Higgs
J| cham Jl top ] |
. o (e ) fmwewe ) [6
o - n ||
& | e & v s
<
3
o J J
Gorr 7 o e
B \ o
"
ol
o
!

o
up
e
Y
down || strange
ez
lectron

X,V A,




Ending Inflation with More
than One Field

* |In order to protect the inflation potential, direct

couplings to other degrees of freedom have to be
small

* Perturbative decay (the ‘old theory of reheating’)
can sometimes take too long”

* This is/was a problem for fans of extremely low-
scale inflation



Vanilla Preheating
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What can we see from this?

. - k2 oV
Or + 3H Py &2%: 9
o ()5

parametric resonance






What we have to do...

* Luckily there are a set of new approaches. We use the
most common of these: the BSSN formalism.

* |t is based on the ADM metric decomposition

Juv = ( e e o WD, )
- 59' Vij

 We we introduce more parameters than (minimally)
necessary so that the equations are easier to solve



Im po rta ntly o These variables have well-behaved

ential equations and are a complete
description of GR without dimensional
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Does Gravity Matter in Preheating?

Red: inflaton Perturbative
Blue: inflaton BSSN

Green: decay field Perturbative
Black: decay field BSSN

The variance of the lapse does
not show departures from
homogeneity that indicate
strong gravity is important
Even though the linearized

Einstein Equations are violated




Perturbative
" BSSN
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Numerical Relativity and
Oscillons

1.3 x 1073 —0.21
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Gauge-Preheating

* There is a history of incorporating couplings of the inflation
to gauge fields, generally with charged inflation fields
(often in the context of Higgs inflation)

 Coupling to U(1) fields by A. Rajantie , E. J. Copeland,
and S. Pascal

 Coupling to SU(2) fields by J. Garcia-Bellido et. al., Saffin
et al.

* However using uncharged scalar (or pseudo-scalar)
degrees of freedom were technically a bit more challenging



Gauge-Preheating

1
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e The “normal” Maxwell Stress-
F, = @u A 0 Au Tensor

e (but not for “normal” E/M)



Gauge-Preheating
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m2¢2 W(¢) F,ul/F'LW X(¢)

17, Bl

* W is a dilatonic coupling that

vanishes as the inflation decays to
ZEro

Possible generation of long-
wavelength magnetic fields during
inflation, e.g. Caldwell, Motta,
Kamionkowski Phys. Rev. D 84,
123525 (2011).



Gauge-Preheating
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« Xis a Chern Simons coupling that

W(¢) e | couples the inflation to the curl of the
vector field
(Y q * A coupling consistent with a shift-
X o = ¢ symmetric inflaton
f * Also possible generation of polarized

magnetic fields during inflation, e.g.
Garretson, Field and Carroll, Phys.
Rev. D 46 5346 (1992)



... We get structure




Is Gravity Important Here?

We can write down a set of evolution equations,
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We see very BIG density
contrasts!




For exciting couplings




But ... there are no PBH
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The minimum value of the lapse
throughout the grid doesn’t approach
ZEro



But the GW

 Rapid-preheat models lead to
extremely efficient gravitational
wave production

e Which can be ruled out via Neff
constraints




What does it look like?




What does it look like?
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Reheating with Alpha-Attractors

Alpha-attractors are a possibility (a la 2311.17237):
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Which is only weakly model
dependent

2502
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P-model




They have lots of
Gravitational Waves!

E-model T-model P-model




And also implications for
matter-dominated eras

A modulus-dominated era might be dramatically concluded by a diatonic
coupling to an anxion
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Or Early Dark Energy
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* |f you're looking to get rid of EDE in a
quick and resonant way




Gauge vs. Scalar Decay
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Things we didn’t talk about

* Kination-dominated (p)reheating
 Tachyonic-preheating from 3-leg interactions

* (P)reheating from non minimally coupled field(s)



discussion topics

More discussion topics

1. Expansion history & scale dependence of signatures (eg. g-wave spectrum)

2. thermal vs. non-thermal initial conditions (and inhomogeneous), for DM
production — freestreaming, isocurvature, clustering

3. coarse grained parameters (equation of state, Neff) vs. scale-dependent
observables — PS, GW spectrum

4. Are there any generic expectations for potentials and couplings for end of
inflation ?



Ask the experts in the audience

1. Andrew for GPP — DM abundance and expansion history
. Adrienne — ask about fragmentation during Kination after inflation
Kim — isocurvature constraints small scale

somebody — how non-gaussianity is expected to be affected

o &~ b

Scott/Keith — non-inflationary “heating”



