
Pre-recombination resolutions to the Hubble tension

θs =
rs(zrec)
DA(zrec)

∼
cs(zrec)/H(zrec)

F(Ωm)/H0
=

H0

H(zrec)
cs(zrec)
F(Ωm)

rs(zrec) = ∫
∞

zrec

cs(z)
H(z)

dz

• If  increases then Silk damping angular scale must increaseH(zrec)

• Angular structure of the CMB must remain  constant≃

θD ∼
H0

·τ(zrec)H(zrec)
δθD /θD ∼ H0/HΛCDM

0 “Damping starts at larger scales”
 also generically 

increases
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• Axion-like EDE is a cosmological scalar field initially fixed by Hubble friction which 
then oscillates 
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On the other hand, we believe that a first order phase
transition holds in it the potential to fully resolve the
discrepancy between the early and late measurements of
H0 much more naturally. In addition, a first order phase
transition will lead to di↵erent experimental signatures
in the details of the CMB and large-scale structure as
well as gravitational waves.

Below we explore the simplest NEDE model. For more
details and generalizations of the model, as well as a de-
tailed comparison with other models, we refer the reader
to our longer subsequent paper [46].

THE MODEL

In order to have a change in the vacuum energy due to a
field that undergoes a first order phase transition, we will
consider a scalar field with two non-degenerate minima at
zero temperature. However, if the tunneling probability
from the false to the true vacuum is initially high, the
field will tunnel immediately and NEDE never makes a
sizable contribution. On the other hand, once tunneling
commences, we need a large rate in order to produce
enough bubbles of true vacuum that will quickly collide.
If the rate is too small, then part of the Universe will be in
the true and part of it in the false vacuum, which will lead
to large inhomogeneities ruled out by observations. We
therefore require an additional sub-dominant trigger field
that, at the right moment, makes the tunneling rate very
high. Analogous to previously considered mechanisms
for ending inflation in [47–50], we will therefore consider
models with a general potential of the form,

V ( ,�) =
�

4
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where  is the tunneling field and � is the trigger field.
The sub-dominant trigger field will be frozen as long as its
mass is smaller than the Hubble rate, but as soon as the
Hubble rate drops below its mass, it will start decaying
and this will trigger the tunneling of the  field. For a
second minimum to develop after the point of inflection,
we need to impose ↵2

> 4��, � > 0. In Fig. 1, we show
a 3D visualization of the evolution of the potential as
the trigger field, �, starts evolving along the orange path
opening up the new vacuum for  , to which it tunnels
with high probability.

The decay rate per unit volume is � = K exp (�SE),
where K is a determinant factor which is generically set
by the energy scale of the phase transition [51, 52] and
SE is the Euclidian action corresponding to a so-called

late and/or early times see [21–45].

FIG. 1. Schematic plot of the two-field potential in (1). For
H <⇠ m, the field rolls along the orange line corresponding
to  = 0. At the inflection point (blue dot) the potential
(in  direction) develops a second minimum which becomes
degenerate shortly after (orange dot). The nucleation prob-
ability increases towards � = 0 (red dot). The true vacuum
corresponds to the white dot.

bounce solution [53]. While it is possible to find an an-
alytic expression in the thin wall limit for a single field,
the general case requires a numerical approach. In [46]
we argue that a good approximation of the Euclidian
action (describing the potential as being e↵ectively one-
dimensional) can be written as

SE ⇡
4⇡2

3�
(2 � �e↵)�3 �

↵1�e↵ + ↵2�
2
e↵ + ↵3�

3
e↵

�
, (2)

with numerically determined coe�cients [54] ↵1 =
13.832, ↵2 = �10.819, ↵3 = 2.0765 and

�e↵(t) = 9
�

↵2

✓
� + �̃

�
2(t)

M2

◆
. (3)

We see that SE becomes large as �e↵ ! 2 and vanishes
as �e↵ ! 0. As a result, the tunneling rate is suppressed
when � is frozen at a su�ciently large initial field value
(corresponding to �e↵ > 9/4 ⇠ 2) and becomes maximal
as �! 0 once the Hubble drag is released (corresponding
to �e↵ ! 9��/↵

2
< 9/4).

At early times, we require the transition rate to be
highly suppressed, which fixes the initial value of the trig-
ger field, �ini, and can be satisfied consistently with the
condition that �ini/Mpl ⌧ 1, which is su�cient to ensure
that the contribution of � to the total energy density is
sub-dominant.

Now, we also have to ensure that NEDE, given by the
potential energy in the  field, gives a sizable contri-
bution to the energy budget at the time t⇤ where bub-
ble percolation of the  vacuum becomes e�cient. We
can quantify it in terms of the ratio fNEDE = �V/⇢̄(t⇤),
where �V is the liberated vacuum energy and ⇢̄ the total
energy density. If the transition occurs at a redshift of
order z ⇠ 5000, � ⇠ 0.1, ↵ ⇠ � ⇠ O(1) and fNEDE ⇠ 0.1,
we have M ⇠ eV and an ultra-light mass scale of order

Niedermann and Sloth 1910.10739, 2006.06686, 
2009.00006

• In both cases the fields have mass parameters of order Heq ≃ 10−27 eV

• Potentials of the form  do not work as wellV ∝ ϕn e.g., TLS, Poulin, and Amin 1908.06995

• ‘New’ EDE is a field in a false vacuum which undergoes a phase transition
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Another example is the “chain EDE” model of Ref. [92], where the Universe undergoes a series of first-order phase
transitions, starting at a high-energy vacuum in a potential, and tunneling down through a chain of lower-energy
metastable minima. In general, a single phase transition occurring around matter-radiation equality (as favored to
resolve the Hubble tension), and characterized by a constant tunneling rate per volume �, is excluded by CMB and
LSS observations due to the non-observation of anisotropies induced by the presence of bubbles of false vacuum on
large scales. One way out of this constraint is a time-dependent tunneling rate �, e.g. due to an additional trigger
field as in the NEDE proposal (an idea originally introduced in the context of double-field inflation [156, 157]). The
authors of Ref. [92] suggest a di↵ernt way to evade the CMB constraints. They invoke tunneling along a chain of false
vacua with decreasing energy at a constant tunneling rate and, using simple scaling arguments, find that a solution to
the Hubble tension requires N > 600 phase transitions to avoid very large anisotropies. A specific example of Chain
EDE is given, featuring a scalar field in a titled cosine potential, that authors argue to be ubiquitous in axion physics
and have strong theoretical motivation. However, a dedicated analysis of this promising model against cosmological
data is still lacking.

A variant of RnR EDE is AdS-EDE, originally studied in Ref. [90]. It consists of a scalar field with a quartic
potential (V / �

4) which is modified so that the field goes through an Anti-De Sitter (AdS) (i.e., V < 0) phase.
Constraints on this model in the literature are incomplete due to the use of a theory prior that appears to enforce a
non-zero lower bound on the EDE fraction11. Yet, in Ref. [90], when fixing the depth of the AdS phase, the model is
shown to have a better �

2 when including the SH0ES prior than RnR, which is encouraging regarding the potential
of this model, and deserves further investigation.

Our final example is the model of assisted quintessence studied in Ref. [94] (see also Ref. [159] for a similar
phenomenological model). This model, originally introduced two decades ago to resolve the ‘cosmic coincidence’
problem [160, 161], introduces a scalar-field that exhibits tracking behavior, such that its energy density is a fixed
fraction of the dominant background species. As a result of the transition from radiation- to matter-domination,
an era of early dark energy occurring around matter-radiation equality is inevitable. Nevertheless, the authors of
Ref. [94] show that this field leads to an irreducible contribution to DM after the transition, that prevents a resolution
of the tension (in fact it slightly exacerbates it). Indeed, as mentioned in the text above, EDE must vanish faster
than matter to alleviate the Hubble tension. An additional energy component in the early universe that dilutes like
matter worsens the tension as shown in [121].

IV. PHENOMENOLOGY OF EARLY DARK ENERGY

The basic physics of a minimally-coupled EDE can be captured through the ‘generalized dark matter’ formalism
first presented in Ref. [162] (see also Ref. [121]). The dynamics of any cosmological material can be described by
specifying an equation of state w(a), an e↵ective sound-speed c

2
s(k, a) (defined in the material’s local rest-frame), and

the anisotropic stress �(k, a). For scalar fields, the anisotropic stress is zero; for the following discussion we will take
� = 0 (see Ref. [95] for a discussion of the phenomenology when the anisotropic stress is non-zero).

A. Background and perturbations evolution

For an EDE with an equation of state wEDE(a), the continuity equation immediately gives the evolution of the
energy density,

⇢EDE(a) = ⇢EDE,0e
3
R 1

a
[1+wEDE(a)]da/a

. (20)

The basic background dynamics of EDEs we review here have wEDE ! �1 at some point in the past, which then
transitions to 0 < wEDE < 1 at some critical scale factor ac. Specifically for a scalar field with a potential of the
form V / �

2n around its minimum, we have wf = (n � 1)/(n + 1) [121, 163]. We can parameterize this through the
function

wEDE(a) =
1 + wf

1 + (ac/a)3(1+wf )
� 1 , (21)

which describes a fluid that does not dilute with cosmic expansion when a ⌧ ac, but dilutes as a
�3(1+wf ) for a � ac.

This parameterization also describes the ADE model when p = 1 as discussed in the previous section.

11 Evidence for this can be found by noting that in Ref. [158] the AdS-EDE fEDE is non-zero at the 17� level but the overall �2 is degraded
by 3.
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active before recombination. Bottom panel: Fractional contribution fEDE ⌘ ⇢EDE/⇢tot of EDE. As a representative example,
we chose a model where the maximum contribution fEDE(zc) = 0.1 is reached at the critical redshift zc ' 3500 subsequently
diluting with an equation of state w = 1/2 afterwards.

For such an equation of state, the background evolution of ⇢EDE(a) is shown in Fig. 4, and is summarized by
fEDE ⌘ ⇢EDE/⇢tot, which shows that the contribution of EDE is localized around the time when the field becomes
dynamical (denoted by the ‘critical’ redshift, zc).

Perturbations on the other hand evolve according to the continuity and Euler equations [162, 164]:
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where primes denote derivatives with respect to conformal time ⌘, the gravitational potentials are h� = hs/6 and
hv = 0 in synchronous gauge, and h� = �N and hv =  N in conformal Newtonian gauge [164],

c
2
a =

⇢
0
EDE

P
0
EDE

= wEDE �
1

3

dwEDE/d ln a

1 + wEDE
(24)

is the adiabatic sound speed defined as the gauge-independent linear relation between time variations of the background
pressure and energy density of the fluid, ṗ = c

2
a⇢̇, and c

2
s is the EDE’s e↵ective sound speed, defined in its local rest-

frame [162]. Note that the choice of wEDE(a) given by Eq. 21 gives c
2
a(a ⌧ ac) = �(2 + wf ) and c

2
a(a � ac) = wf ,

which approximates the time variation of the adiabatic sound speed in scalar-field EDE models [121].
The choice of c

2
s is more complicated, since in general it depends on both k and a. In scalar-field models with a

potential of the form V / �
2n [121],

c
2
s(k, a) =

2a
2(n � 1)$2 + k

2

2a2(n + 1)$2 + k2
, (25)

Poulin, TLS, Karwal 2302.09032

What we learn from a fluid model

13

Another example is the “chain EDE” model of Ref. [92], where the Universe undergoes a series of first-order phase
transitions, starting at a high-energy vacuum in a potential, and tunneling down through a chain of lower-energy
metastable minima. In general, a single phase transition occurring around matter-radiation equality (as favored to
resolve the Hubble tension), and characterized by a constant tunneling rate per volume �, is excluded by CMB and
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vacua with decreasing energy at a constant tunneling rate and, using simple scaling arguments, find that a solution to
the Hubble tension requires N > 600 phase transitions to avoid very large anisotropies. A specific example of Chain
EDE is given, featuring a scalar field in a titled cosine potential, that authors argue to be ubiquitous in axion physics
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Our final example is the model of assisted quintessence studied in Ref. [94] (see also Ref. [159] for a similar
phenomenological model). This model, originally introduced two decades ago to resolve the ‘cosmic coincidence’
problem [160, 161], introduces a scalar-field that exhibits tracking behavior, such that its energy density is a fixed
fraction of the dominant background species. As a result of the transition from radiation- to matter-domination,
an era of early dark energy occurring around matter-radiation equality is inevitable. Nevertheless, the authors of
Ref. [94] show that this field leads to an irreducible contribution to DM after the transition, that prevents a resolution
of the tension (in fact it slightly exacerbates it). Indeed, as mentioned in the text above, EDE must vanish faster
than matter to alleviate the Hubble tension. An additional energy component in the early universe that dilutes like
matter worsens the tension as shown in [121].

IV. PHENOMENOLOGY OF EARLY DARK ENERGY

The basic physics of a minimally-coupled EDE can be captured through the ‘generalized dark matter’ formalism
first presented in Ref. [162] (see also Ref. [121]). The dynamics of any cosmological material can be described by
specifying an equation of state w(a), an e↵ective sound-speed c

2
s(k, a) (defined in the material’s local rest-frame), and

the anisotropic stress �(k, a). For scalar fields, the anisotropic stress is zero; for the following discussion we will take
� = 0 (see Ref. [95] for a discussion of the phenomenology when the anisotropic stress is non-zero).

A. Background and perturbations evolution

For an EDE with an equation of state wEDE(a), the continuity equation immediately gives the evolution of the
energy density,

⇢EDE(a) = ⇢EDE,0e
3
R 1

a
[1+wEDE(a)]da/a

. (20)

The basic background dynamics of EDEs we review here have wEDE ! �1 at some point in the past, which then
transitions to 0 < wEDE < 1 at some critical scale factor ac. Specifically for a scalar field with a potential of the
form V / �

2n around its minimum, we have wf = (n � 1)/(n + 1) [121, 163]. We can parameterize this through the
function

wEDE(a) =
1 + wf

1 + (ac/a)3(1+wf )
� 1 , (21)

which describes a fluid that does not dilute with cosmic expansion when a ⌧ ac, but dilutes as a
�3(1+wf ) for a � ac.

This parameterization also describes the ADE model when p = 1 as discussed in the previous section.

11 Evidence for this can be found by noting that in Ref. [158] the AdS-EDE fEDE is non-zero at the 17� level but the overall �2 is degraded
by 3.
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active before recombination. Bottom panel: Fractional contribution fEDE ⌘ ⇢EDE/⇢tot of EDE. As a representative example,
we chose a model where the maximum contribution fEDE(zc) = 0.1 is reached at the critical redshift zc ' 3500 subsequently
diluting with an equation of state w = 1/2 afterwards.

For such an equation of state, the background evolution of ⇢EDE(a) is shown in Fig. 4, and is summarized by
fEDE ⌘ ⇢EDE/⇢tot, which shows that the contribution of EDE is localized around the time when the field becomes
dynamical (denoted by the ‘critical’ redshift, zc).

Perturbations on the other hand evolve according to the continuity and Euler equations [162, 164]:
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where primes denote derivatives with respect to conformal time ⌘, the gravitational potentials are h� = hs/6 and
hv = 0 in synchronous gauge, and h� = �N and hv =  N in conformal Newtonian gauge [164],
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is the adiabatic sound speed defined as the gauge-independent linear relation between time variations of the background
pressure and energy density of the fluid, ṗ = c

2
a⇢̇, and c

2
s is the EDE’s e↵ective sound speed, defined in its local rest-

frame [162]. Note that the choice of wEDE(a) given by Eq. 21 gives c
2
a(a ⌧ ac) = �(2 + wf ) and c

2
a(a � ac) = wf ,

which approximates the time variation of the adiabatic sound speed in scalar-field EDE models [121].
The choice of c

2
s is more complicated, since in general it depends on both k and a. In scalar-field models with a

potential of the form V / �
2n [121],

c
2
s(k, a) =

2a
2(n � 1)$2 + k

2

2a2(n + 1)$2 + k2
, (25)

Perturbation equations:
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where primes denote derivatives with respect to conformal time ⌘, the gravitational potentials are h� = hs/6 and
hv = 0 in synchronous gauge, and h� = �N and hv =  N in conformal Newtonian gauge [164],
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is the adiabatic sound speed defined as the gauge-independent linear relation between time variations of the background
pressure and energy density of the fluid, ṗ = c
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2(n � 1)$2 + k

2

2a2(n + 1)$2 + k2
, (25)

Perturbations 
are important!

c2
s = 0.54 + 0.25 × wf

10°1 101

a/ac

°1.0

°0.5

0.0

0.5

w



Extensions:
• Coupling DM & EDE to address S8

Karwal ++ 2106.13290

4

and will explicitly specify fEDE(z) when referring to
the above. At times after zc, i.e., at lower redshifts,
the field rolls down the potential V (�) and undergoes
damped oscillations. The energy density of the scalar
rapidly redshifts away, naively leaving no trace in the
post-recombination universe.

One can easily estimate the model parameters neces-
sary to resolve the Hubble tension. The sound horizon
and damping scale are most sensitive to dynamics that
occur in the decade of redshift preceding last scattering
[67]. This e↵ectively imposes zc ⇠ zeq, which in turn
determines the mass parameter m as

m ⇠ 10�27eV. (6)

Meanwhile, the discrepancy in the Hubble constant H0

is roughly 10%, which, combined with �i = O(f) by
standard arguments (see, e.g., [35]), implies that

V (z ⇠ zc) ⇠ 0.1H2

eq
M

2

pl
, (7)

and hence,

f ⇠ Mpl. (8)

Thus we see the EDE scalar field, insofar as it is rele-
vant to the Hubble tension, naturally undergoes a field
excursion |��| ⇠ f ⇠ Mpl.

Little is known about field theories near the Planck
scale. At these scales one can reasonably expect quan-
tum gravity e↵ects, e.g., from string theory, to become
relevant. When assessing models, in lieu of a concrete
string theory construction, one approach is to take guid-
ance from known calculable string theory examples, dis-
tilled into a simple set of conjectures – so-called “Swamp-
land” conjectures [41] (for a review, see [42–44]). The
Swampland conjectures collectively aim to delineate the
boundary between e↵ective field theories that are incon-
sistent once gravity is quantized (or more precisely, EFTs
that do not admit a UV completion into quantum gravity
[42]), and those that are consistent with quantum gravity
(and hence do admit UV completion).

Of particular relevance to EDE is the SDC [6]. The
SDC holds that any low-energy e↵ective field theory is
only valid in a region of field space bounded by the Planck
scale, and the breakdown of e↵ective field theory that oc-
curs at Planckian field excursions is encoded in an expo-
nential sensitivity of the mass spectrum of the e↵ective
theory. This can be expressed as, for the mass of at least
one such field in the spectrum,

M ⇠ M0e
�↵|�|/Mpl , (9)

where � is the distance traversed in field space, and ↵

is an order-1 parameter. There are numerous concrete
examples that support the SDC. For example, consider a
universe with an extra dimension that is a circle of radius
R. Dimensional reduction on the circle yields a tower of
massive Kaluza-Klein excitations, with masses given by

m
2

n ' n
2
M

2

pl
e
�2'/Mpl , (10)

where ' ⌘ Mpllog(MplR) is the canonically normalized
radius of the circle. At large field values ' & Mpl, the
Kaluza-Klein fields become exponentially light and a pri-
ori cannot be neglected. For other examples of the scaling
in Eq. (9), see, e.g., the review in [44].
The EDE scenario is precisely the sort of model that

the SDC is designed to address, namely a model with
Planckian field excursions. While this is not unique to
EDE, and is exhibited also in late-universe dark energy
models, such as quintessence [68], the EDE model is
unique in that this exponential sensitivity is activated in
the high-redshift universe. Thus one might hope that cos-
mological observables such as the CMB and LSS may be
powerful probes of the couplings predicted by the SDC,
e.g., of the form in Eq. (9), in the EDE model.
With all this in mind, in this work we consider a sim-

ple model that implements these ideas. We extend the
EDE model to the Early Dark Sector (EDS), and con-
sider a coupling of the EDE field to dark matter of the
form predicted by the SDC. While fields that exhibit the
mass scaling in Eq. (9) could in principle be an arbitrary
fraction of the total dark matter, for simplicity we as-
sume � couples to all dark matter. As a concrete model,
we consider the following Lagrangian:

L =
1

2
(@�)2 + i ̄ /D � V (�)�mDM(�) ̄ , (11)

where � is the EDE scalar with potential V (�) and  is a
fermionic cold dark matter candidate with �-dependent
mass mDM(�). We consider the specific form of the po-
tential V (�) given by Eq. (4), and a field-dependent mass
mDM(�) given by

mDM(�) = m0e
c�/Mpl , (12)

as motivated by the SDC, and in particular the extension
of the SDC to axions [7–10]. In our work we fix the
convention that � decreases over the course of cosmic
evolution, i.e., � evolves from �i > 0 in the early universe
to �f ⇠ 0 in the present universe. The SDC then predicts
that c defined by Eq. (12) is positive (c > 0), such that
the dark matter mass is decreased by a Planckian field
excursion of �. In what follows, we refer to the system
defined by Eqs. (11), (12), and (4), as the EDS model.
The background cosmology of the EDS model Eq. (11)

is specified by the Friedmann equations, along with the
scalar field equation of motion,

�̈+ 2aH�̇+ a
2
dV

d�
= �a

2
c

Mpl

⇢DM, (13)

where dot denotes a derivative with respect to conformal
time and H = (1/a)da/dt where t is cosmic time, and
the conservation equation for the joint stress-energy of
the dark matter and scalar field. The latter leads to the
modified continuity equation for the dark matter density,

⇢̇DM + 3aH⇢DM =
c

Mpl

�̇⇢DM. (14)
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and will explicitly specify fEDE(z) when referring to
the above. At times after zc, i.e., at lower redshifts,
the field rolls down the potential V (�) and undergoes
damped oscillations. The energy density of the scalar
rapidly redshifts away, naively leaving no trace in the
post-recombination universe.

One can easily estimate the model parameters neces-
sary to resolve the Hubble tension. The sound horizon
and damping scale are most sensitive to dynamics that
occur in the decade of redshift preceding last scattering
[67]. This e↵ectively imposes zc ⇠ zeq, which in turn
determines the mass parameter m as

m ⇠ 10�27eV. (6)

Meanwhile, the discrepancy in the Hubble constant H0

is roughly 10%, which, combined with �i = O(f) by
standard arguments (see, e.g., [35]), implies that

V (z ⇠ zc) ⇠ 0.1H2

eq
M

2

pl
, (7)

and hence,

f ⇠ Mpl. (8)

Thus we see the EDE scalar field, insofar as it is rele-
vant to the Hubble tension, naturally undergoes a field
excursion |��| ⇠ f ⇠ Mpl.

Little is known about field theories near the Planck
scale. At these scales one can reasonably expect quan-
tum gravity e↵ects, e.g., from string theory, to become
relevant. When assessing models, in lieu of a concrete
string theory construction, one approach is to take guid-
ance from known calculable string theory examples, dis-
tilled into a simple set of conjectures – so-called “Swamp-
land” conjectures [41] (for a review, see [42–44]). The
Swampland conjectures collectively aim to delineate the
boundary between e↵ective field theories that are incon-
sistent once gravity is quantized (or more precisely, EFTs
that do not admit a UV completion into quantum gravity
[42]), and those that are consistent with quantum gravity
(and hence do admit UV completion).

Of particular relevance to EDE is the SDC [6]. The
SDC holds that any low-energy e↵ective field theory is
only valid in a region of field space bounded by the Planck
scale, and the breakdown of e↵ective field theory that oc-
curs at Planckian field excursions is encoded in an expo-
nential sensitivity of the mass spectrum of the e↵ective
theory. This can be expressed as, for the mass of at least
one such field in the spectrum,

M ⇠ M0e
�↵|�|/Mpl , (9)

where � is the distance traversed in field space, and ↵

is an order-1 parameter. There are numerous concrete
examples that support the SDC. For example, consider a
universe with an extra dimension that is a circle of radius
R. Dimensional reduction on the circle yields a tower of
massive Kaluza-Klein excitations, with masses given by

m
2

n ' n
2
M

2

pl
e
�2'/Mpl , (10)

where ' ⌘ Mpllog(MplR) is the canonically normalized
radius of the circle. At large field values ' & Mpl, the
Kaluza-Klein fields become exponentially light and a pri-
ori cannot be neglected. For other examples of the scaling
in Eq. (9), see, e.g., the review in [44].
The EDE scenario is precisely the sort of model that

the SDC is designed to address, namely a model with
Planckian field excursions. While this is not unique to
EDE, and is exhibited also in late-universe dark energy
models, such as quintessence [68], the EDE model is
unique in that this exponential sensitivity is activated in
the high-redshift universe. Thus one might hope that cos-
mological observables such as the CMB and LSS may be
powerful probes of the couplings predicted by the SDC,
e.g., of the form in Eq. (9), in the EDE model.
With all this in mind, in this work we consider a sim-

ple model that implements these ideas. We extend the
EDE model to the Early Dark Sector (EDS), and con-
sider a coupling of the EDE field to dark matter of the
form predicted by the SDC. While fields that exhibit the
mass scaling in Eq. (9) could in principle be an arbitrary
fraction of the total dark matter, for simplicity we as-
sume � couples to all dark matter. As a concrete model,
we consider the following Lagrangian:

L =
1

2
(@�)2 + i ̄ /D � V (�)�mDM(�) ̄ , (11)

where � is the EDE scalar with potential V (�) and  is a
fermionic cold dark matter candidate with �-dependent
mass mDM(�). We consider the specific form of the po-
tential V (�) given by Eq. (4), and a field-dependent mass
mDM(�) given by

mDM(�) = m0e
c�/Mpl , (12)

as motivated by the SDC, and in particular the extension
of the SDC to axions [7–10]. In our work we fix the
convention that � decreases over the course of cosmic
evolution, i.e., � evolves from �i > 0 in the early universe
to �f ⇠ 0 in the present universe. The SDC then predicts
that c defined by Eq. (12) is positive (c > 0), such that
the dark matter mass is decreased by a Planckian field
excursion of �. In what follows, we refer to the system
defined by Eqs. (11), (12), and (4), as the EDS model.
The background cosmology of the EDS model Eq. (11)

is specified by the Friedmann equations, along with the
scalar field equation of motion,

�̈+ 2aH�̇+ a
2
dV

d�
= �a

2
c

Mpl

⇢DM, (13)

where dot denotes a derivative with respect to conformal
time and H = (1/a)da/dt where t is cosmic time, and
the conservation equation for the joint stress-energy of
the dark matter and scalar field. The latter leads to the
modified continuity equation for the dark matter density,

⇢̇DM + 3aH⇢DM =
c

Mpl

�̇⇢DM. (14)
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FIG. 5. Density growth of EDS best-fit model as c varied,
with fixed H0 and all other parameters (except ✓s) fixed to
their values in Eqs. (17) and (18). The vertical line indicates
the location of zc. Here k = 0.2hMpc�1 .

FIG. 6. S8 value as function of c, with fixed H0 and all other
parameters (except ✓s) fixed to their values in Eqs. (17) and
(18). The red dot indicates the best-fit model.

over temporal derivatives for ��. This is a good approxi-
mation deep inside the horizon. In this limit, the impact
of �⇢DM on �� takes the form of a non-oscillatory o↵set
��

(0) / c�c (see Eq. B6). Substituting this back into
the equation for �c, the resulting e↵ect is an O(c2) self-
interaction. We find

�̈c +H�̇c = 4⇡Ga
2
⇢c�c

✓
1 +

2c2k2

k2 + a2d2V/d�2

◆
, (26)

where H is the Hubble parameter defined with respect to
conformal time. From this one may read o↵ an e↵ective

FIG. 7. Matter power spectra of EDS best-fit model as c

varied, with fixed H0 and all other parameters (except ✓s)
fixed to their values in Eqs. (17) and (18). The results are
compared to the best-fit ⇤CDM model.

gravitational constant,

Ge↵ = GN

✓
1 +

2c2k2

k2 + a2d2V/d�2

◆
, (27)

which is independent of the sign of c. This expres-
sion simplifies in the high-k limit, namely, for physical
wavenumbers greater than the mass of the EDE scalar
field, which satisfy,

k

a
� m� ⌘

p
d2V/d�2. (28)

In this limit, we have,

Ge↵ = GN (1 + 2c2), (29)

which is independent of k and the scalar field potential.
This enhanced gravitational constant can understood as
a dark matter-philic scalar-mediated force.
The range of k-modes which satisfy Eq. (28) changes

throughout cosmic history, as the EDE scalar evolves.
Before zc, for the parameters in Eq. (17), the field mass
is |m�| ' 3.9⇥ 10�14 eV ' 18h/Mpc. After zc, the field
is released from Hubble friction and begins to oscillate,
and the mass rapidly decreases. After this, modes come
to satisfy Eq. (28). The modes predominantly responsi-
ble for setting S8, k ⇡ 0.2h/Mpc, satisfy Eq. (28) shortly
after zc, while longer-wavelength modes begin to satisfy
Eq. (28) at later times tk as a(tk) ⇠ k

2. The mass even-
tually settles to its value at the minimum of the e↵ective
potential and quasistatically evolves with ⇢DM. We de-
rive in App. B the scaling of this quasistatic mass with
parameters and show that it remains negligible, even with
the enhanced local ⇢DM of virialized structures. Conse-
quently, even on nonlinear scales today, the scalar medi-
ates an enhanced force on the dark matter.

Leads to enhanced DM growth:
Bean ++ 0808.1105

• Modified gravity
Adi and Kovetz 2011.13853
Abellan, Braglia++ 2308.12345 V(σ) = λσ4/4

• Non-minimal coupling to address 
fine tuning Sakstein and Trodden 1911.11760

Gonzalez, Liang, Sakstein and Trodden 2011.09895

Lin, McDonough, Hill, and Hu 2212.08098
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X 0(~⌦) = X(~⌦) + �X(~⌦) di↵er from those of the stan-
dard model X(~⌦) by small amounts �⌦i

BF
and ��

2

BF
, re-

spectively. Assuming �X(~⌦fid) and X(~⌦fid) �Xobs are
approximately of the same order of magnitude, and by
writing a change in the theoretical model due to changes
in a smooth function f(z) as

�X =

Z
dz

�X

�f(z)
�f(z), (8)

we obtain the resulting changes in the best-fit parameters
and chi-squared

�⌦i

BF
=

Z
dz

�⌦i

BF

�f(z)
�f(z), (9)

��
2

BF
=

Z
dz

��
2

BF

�f(z)
�f(z)

+
1

2

ZZ
dz dz

0 �
2
�

2

BF

�f(z)�f(z0)
�f(z)�f(z0), (10)

where

�⌦i

BF

�f(z)
= �(F�1)ij

@X

@⌦j
· M ·

�X

�f(z)
, (11)

��
2

BF

@f(z)
= 2[X(~⌦fid) � Xobs] · fM ·

�X

�f(z)
, (12)

�
2
�

2

BF

�f(z)�f(z0)
= 2

�X

�f(z)
· fM ·

�X

�f(z0)
, (13)

where Fij ,M , fM , @X/@⌦i and �X/�f(z) are all to be
evaluated at the fiducial cosmology and in the standard
model. With the simplified expressions of Eqs. (9)-(13),
the optimization problem of Eq. (1) becomes tractable.
The equations above are known as the Fisher-bias for-
malism [58–62], used in Refs. [63, 64] to constrain arbi-
trary functions. While the formalism is well known, the
application we make of it is completely novel.

While our formalism is general and could be applied
to any function f(z) on which observables depend, in
this Letter we will consider modifications to the cosmo-
logical ionization history. Specifically, we will consider
time-dependent relative variations of the electron mass
[f(z) = ln me(z)] in the main text, generalizing the con-
stant change to the electron mass which has been shown
to be a promising solution [49, 50, 54]. We also consider
time-dependent variations of the fine structure constant
[f(z) = ln↵(z)], in Appendix. H.2

The functional derivatives �X/�f(z) are obtained nu-
merically by adding narrow (Dirac-delta-like) changes to
the smooth function f(z), at di↵erent redshifts. This
is done by modifying the recombination code hyrec-2

2 The variations in the net recombination rate is another inter-
esting possible extension we considered. However, it happens to
inherit a stronger non-linearity of C`’s, hence we do not include
it in this Letter (see also Appendix. G).

[65–67] implemented in class [68] (see Appendix. B
for details). This part of the calculation is similar to
what has been done in principal component analyses
(PCAs) of recombination perturbations [69, 70]. Despite
this technical similarity, the mathematical problem we
solve is very di↵erent from the one considered in PCAs,
which search the eigenmodes of the (discretized) matrix
�
2
�

2
/�f(z)�f(z0) with the largest eigenvalues. In words,

PCAs look for perturbations to recombination to which
the data is most sensitive, while in contrast, our goal is to
find the smallest perturbations producing a desired shift
in best-fit cosmological parameters while not increasing
the best-fit �

2. See Appendix. D for the di↵erences in
two analyses.

We will now apply this general formalism to Planck
CMB anisotropy data and then to the combined Planck
+ BAO, Planck + BAO + PantheonPlus [71] dataset,
with the goal of finding data-driven solutions to the Hub-
ble tension. Note that by BAO we denote BOSS DR12
anisotropic BAO measurements [72].
Result I: Application to Planck CMB data.—Here, the

vector X consists of the binned lensed temperature and
polarization power spectra, X ⌘ {D

TT

`
, D

TE

`
, D

EE

`
}. For

` � 30, we use the Planck-lite foreground-marginalized
binned spectra and covariance matrix. For ` < 30, we
adopt the compressed log-normal likelihood of Prince and
Dunkley [73], which has been shown to give virtually
the same constraints as the exact low-` Planck likelihood
(and therefore we use X ⌘ {ln D

TT

`
, ln D

TE

`
, ln D

EE

`
} for

` < 30). We set our fiducial cosmology to the Planck
best-fit ⇤CDM parameters [1].

500 1000 1500 2000 2500

z

0.00

0.01

0.02

0.03

0.04

�me

me
(z), CMB only

��2
BF = 0

HBF
0 = 73.04 km s�1 Mpc�1

67.3

68.7

70.1

71.6

73.0

H
B

F
0

[k
m

s�
1

M
p
c�

1
]

FIG. 1. Solutions for �me
me

(z) given target values of the CMB-
only best-fit Hubble constant H0, using Planck data [1] alone.
All solutions are constructed to keep the Planck best-fit chi-
squared una↵ected. The solution with a best-fit consistent
with SH0ES [2] H

BF
0 = H

SH0ES
0 ⌘ 73.04 km s�1Mpc�1(black

curve), is denoted as ⇤CDM + me(z) model in the text.

Using our formalism, we find variations of the time-
varying electron mass me(z) that cause the value in-

• ‘constrained optimization’ 
Lee++ 2212.04494

Moss et al. 2109.14848

• Binned Δρ(ai)
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Figure 2. The top panel shows the transfer function for an example
vEDE cosmology with R� = 99, ac = 10�6, and n = 8. For
both ⇤CDM (dashed) and vEDE (solid), we assume Planck 2018
TT,TE,EE,lowE best-fit values for !b, !cdm, h, As, ns, and ⌧reio

[12]. The dotted and solid curves in the bottom panel respectively
show the values of �H/H defined by Eq. (5), and d lnH/d ln a at
the time of horizon entry for each mode. The evolution of modes
in Regimes A, B, and C are detailed in Secs. III A, III B, and III C,
respectively.

The combination of delayed horizon entry and the al-
tered growth of �cdm leads to perturbation modes be-
ing either suppressed or enhanced compared to ⇤CDM,
which culminates in a matter power spectrum such as
that shown in top panel of Fig. 2. The dotted curve in the
bottom panel of Fig. 2 depicts the value of �H/H at the
time of horizon entry for each mode, while the solid line
shows the corresponding values of d ln H/d ln a. The ex-
ample in Fig. 2 can be divided into three regimes. Regime
A (k & 137 hMpc�1) contains modes that enter the hori-
zon before the vEDE era so that the time of horizon entry
for these modes is una↵ected by the scalar field. Modes
in Regime B (0.01 hMpc�1 . k . 137 hMpc�1) enter the
horizon during the vEDE era and thus these modes expe-
rience both horizon entry delay and an altered subhorizon
growth of �cdm. Finally, Regime C (k . 0.01 hMpc�1)
contains modes that enter the horizon after the vEDE
era: these modes are una↵ected by vEDE. In the follow-
ing subsections, we detail the possible evolutions of �cdm

in these three regimes.

A. Regime A

For small-scale modes that enter the horizon before
the vEDE era, vEDE only a↵ects the evolution of � af-
ter it is oscillating and insignificant (see the top panel of
Fig. 3). DM particles obtain a drift velocity upon horizon
entry, and �cdm grows logarithmically while H(a) / a

�2.
Once ⇢� becomes dominant, H(a) begins to decrease at
a slower rate than during radiation domination, causing
the growth rate of �cdm to be suppressed. This can be
seen for the k = 500 hMpc�1 mode of Fig. 3. The middle
panel shows that �cdm initially grows logarithmically af-
ter horizon entry but then the growth of �cdm stops once
�H/H exceeds unity.

As seen in Fig. 3, �cdm for the k = 500 hMpc�1

mode appears to remain constant as ⇢� rapidly decreases
with w� = +1, contrary to the expectation of enhanced
growth when H(a) decreases faster than a

�2. This appar-
ent behavior can be understood by considering Eq. (4),
which describes the comoving distance traveled by DM
particles after horizon entry of a given mode. If a mode
enters the horizon at a scale factor of ahor < ac, then
Eq. (4) can be represented as a piecewise integral of the
form

~s(a) /
Z ac

ahor

dã

ã3H(ã)
+

Z a

ac

dã

ã3H(ã)
, (6)

when a > ac. The first integral in Eq. (6) is simply a
constant whereas the second integral grows with increas-
ing a. For a perturbation mode that enters the horizon
just before ac, Eq. (6) will be dominated by the grow-
ing integral. Meanwhile, Eq. (6) for a mode that enters
the horizon well before ac will be dominated by the con-
stant term. As a result, the k = 500 hMpc�1 mode in
Fig. 3 does not appear to grow when a & ac even though
d�cdm/da is nearly constant.

After the vEDE era, �cdm resumes its standard evolu-
tion: subhorizon modes grow logarithmically during ra-
diation domination and then transition to linear growth
at matter-radiation equality. Depending on the values
of ac and R�, the end of the vEDE era may be close to
the time of matter-radiation equality. The vEDE era in
Fig. 3 ends around a ⇡ 10�3.5, and so all modes quickly
lock on to linear growth in �cdm once the vEDE era is
complete.

All modes that enter the horizon before the vEDE era
ultimately end up suppressed compared to ⇤CDM. The
level of suppression for these modes depends on how soon
the vEDE era begins after horizon entry; a mode that en-
ters just prior to the vEDE era is more suppressed than
a mode that enters the horizon well before the vEDE
era. We demonstrate this e↵ect in Appendix A by con-
structing a toy model of �cdm(a) that consists of stan-
dard logarithmic growth during radiation domination,
followed by a period of stunted growth and a subsequent
period of enhanced growth. We find that starting the de-
viation from logarithmic growth closer to horizon entry

V(ϕ) = f 2m2(1 − cos θ)8
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Stop calling it the Hubble tension!
Lynch, Knox, and Chluba, 2406.10202
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The preferred shape of the potential

V(ϕ) = m2f 2E(θ ≡ ϕ/f )

0.0

0.1

f E
D

E

102 103 104 105

z

°1

0

1

a2 cV
00 /

k
2 c

2

4

6

d
ln

E
/d

ln
µ

q = 1

q = 1.5

q = 2

q = 2.5

axion-like

0 1 2 3
µ

°5

0

5

d2
E

/d
µ2

Axion-like: E = (1 − cos θ)3

Double power law: E = (1 + θ2n)q/(2n) − 1


