Rouzbeh Slides

Top-Down Realizations: Considerations & Constraints

HEP models of the early universe contain multiple scalar fields: Higgs + Inflaton(s) + Others (axions, string moduli, etc)

They can lead to non-standard thermal histories $w \neq \frac{1}{3}$:

(1) Coherent oscillations

$$V(\phi) \propto |\phi|^n \implies w = \frac{n-2}{n+2}$$
 (averaged over oscillations)
 $n > 4 \implies \frac{1}{3} < w \le 1$

A tiny radiation component will eventually dominate \rightarrow

- Successful reheating without entropy generation,
- Correct DM abundance for large annihilation cross sections

w = 1: Kination

- Non-oscillatory models of inflation

- Axion rotation (Akshay, next block)

 $n < 2 \implies w < 0$

- Early DE (Tristan, next block)

Must be careful:

- Growth of field fluctuations for negative pressure
 - \rightarrow Fragmentation of coherent oscillations (Q-balls, I-balls, ...)
- Non-perturbative effects from self-coupling
- \rightarrow Self-resonant decay of coherent oscillations

(2) Interacting scalar fields

$$V(\phi,\chi) = \frac{1}{2}m^2\phi^2 + \frac{1}{2}g^2\phi^2\chi^2 + \frac{1}{2}\sigma\phi\chi^2 + \frac{1}{4}\lambda\chi^4$$

- Rapid energy transfer from ϕ oscillations to χ
- Backreaction \rightarrow A plasma of ϕ , χ quanta in equilibrium with $w \simeq \frac{1}{4}$
- Reaching full equilibrium takes much longer

Podolsky, Felder, Kofman, Peloso (2005)

Dufaux & FKPP (2006)

$$m_{eff}^2 \simeq < p^2 > \gg m^2$$

Building explicit models is challenging.

Consider the case with $0 \le w < \frac{1}{3} \rightarrow$ Entropy generation

 \rightarrow EMD a prominent example

Requirements:

(1) Obtaining the correct DM abundance.

(2) Generating the observed baryon asymmetry.

- (3) Successful reheating:
 - Not overproducing dangerous relics (gravitinos, DR, etc)
 - Not overpopulating hidden sectors (especially multiple moduli case)

Constraints on string constructions of EMD and non-thermal DM

→ For example, LVS vs KKLT

R.A., Cicoli, Dutta, Sinha (2013, 2014) R.A., Broeckel, Cicoli, Osinski (2020)

UV complete models should address both inflation and post-inflation.

Number of e-foldings for CMB perturbations affected:

$$N_{k_*} \approx 57.3 + \frac{1}{4} \ln(r) - \Delta N_{reh} - \Delta N_{EMD}$$

$$\Delta N_{reh} = \frac{1 - 3w_{reh}}{6(1 + w_{reh})} \ln\left(\frac{H_{inf}}{H_{reh}}\right) \qquad \Delta N_{EMD} = \frac{1}{6} \ln\left(\frac{H_0}{H_R}\right) > 0$$

Two universality classes of single field inflation models: Roest (2014)

- Class I: a = c, $b \sim O(10)$

E.G., Starobinsky inflation and Higgs inflation $r \leq O(0.01)$

- Class II: b = 8(a - 1), c = 1

E.G., axion monodromy inflation $r \sim O(0.1)$

Histories with $w < \frac{1}{3}$ restricts models of inflation & vice versa.

How long coherent oscillations of moduli last?

- Fragmentation to oscillons

Can happen for some moduli in KKLT and LVS setups Antusch, Cefala, Krippendorf, Muia, Orani, Quevedo (2017)

- Non-perturbative decay to moduli quanta Might happen from couplings to the Higgs Cicoli, Hebecker, Jaeckel, Wittner (2022)

Eventually, an epoch of EMD is expected to follow.

However, there could be a prolonged period with w > 0.

→ Affects relic abundances and number of e-foldings.

Sten Slides

Chemical outcomes

e.g., thermal dark matter production

Freeze-out when $n_{\chi} \langle \sigma v \rangle = H$.

 $w > 1/3 \rightarrow H$ higher \rightarrow need higher $\langle \sigma v \rangle$ for same n_{χ}

Growth of perturbations

Standard picture: radiation dominated for $a < 3 \times 10^{-4}$

Matter power spectrum

Consider a power-law primordial power spectrum that is consistent with CMB measurements

Growth of perturbations

Dominant species does not cluster, so there is no peculiar gravity. All evolution arises only from initial motion + free particle drift.

Suppression of perturbations

Dominant species does not cluster, so there is no peculiar gravity. All evolution arises only from initial motion + free particle drift.

Matter power spectrum and nonlinear structure

Matter power spectrum and nonlinear structure

Earlier structure formation \rightarrow denser structures (\propto density of Universe at formation time)

Tristan Slides

Pre-recombination resolutions to the Hubble tension

• Angular structure of the CMB must remain \simeq constant

$$r_s(z_{\rm rec}) = \int_{z_{\rm rec}}^{\infty} \frac{c_s(z)}{H(z)} dz$$
$$\theta_s = \frac{r_s(z_{\rm rec})}{D_A(z_{\rm rec})} \sim \frac{c_s(z_{\rm rec})/H(z_{\rm rec})}{F(\Omega_m)/H_0} = \frac{H_0}{H(z_{\rm rec})} \frac{c_s(z_{\rm rec})}{F(\Omega_m)}$$

• If $H(z_{rec})$ increases then Silk damping angular scale <u>must</u> increase

Stop calling it the Hubble tension!

Stop calling it the Hubble tension!

See Poulin, TLS++ 2407.18292

Stop calling it the Hubble tension!

See Poulin, TLS++ 2407.18292

Two case studies: axion-like EDE and 'new' EDE

Axion-like EDE is a cosmological scalar field initially fixed by Hubble friction which then oscillates

· 'New' EDE is a field in a false vacuum which undergoes a phase transition

- In both cases the fields have mass parameters of order $H_{\rm eq}\simeq 10^{-27}~{\rm eV}$
- Potentials of the form $V \propto \phi^n \, do \, not \, work$ e.g., TLS, Poulin, and Amin 1908.06995

Lin++ 1905.12618 Poulin, TLS, Karwal 2302.09032 $egin{aligned} &
ho_{ ext{EDE}}(a) =
ho_{ ext{EDE},0} e^{3 \int_a^1 [1+w_{ ext{EDE}}(a)] da/a} \ &w_{ ext{EDE}}(a) = rac{1+w_f}{1+(a_c/a)^{3(1+w_f)}} - 1 \end{aligned}$

$$\begin{split} \frac{d}{d\eta} \left(\frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} \right) &= -\left(\theta_{\text{EDE}} + h_{\delta}' \right) - 3\frac{a'}{a} (c_s^2 - c_a^2) \left(\frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} + 3\frac{a'}{a} \frac{\theta_{\text{EDE}}}{k^2} \right) \\ \theta_{\text{EDE}}' &= -\frac{a'}{a} \left(1 - 3c_s^2 \right) \theta_{\text{EDE}} + c_s^2 k^2 \frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} + k^2 h_v, \\ c_a^2 &= \frac{\rho_{\text{EDE}}'}{P_{\text{EDE}}'} = w_{\text{EDE}} - \frac{1}{3} \frac{dw_{\text{EDE}}/d\ln a}{1 + w_{\text{EDE}}} \end{split}$$

$$\begin{split} \frac{d}{d\eta} \left(\frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} \right) &= -\left(\theta_{\text{EDE}} + h'_{\delta}\right) - 3\frac{a'}{a} (c_s^2)}{c_s^2} c_a^2 \right) \left(\frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} + 3\frac{a'}{a} \frac{\theta_{\text{EDE}}}{k^2} \right) \\ \theta'_{\text{EDE}} &= -\frac{a'}{a} \left(1 - 3c_s^2 \right) \theta_{\text{EDE}} + c_s^2 k^2 \frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} + k^2 h_v, \\ c_a^2 &= \frac{\rho'_{\text{EDE}}}{P'_{\text{EDE}}} = w_{\text{EDE}} - \frac{1}{3} \frac{dw_{\text{EDE}}/d\ln a}{1 + w_{\text{EDE}}} \end{split}$$

$$\begin{split} \frac{d}{d\eta} \left(\frac{\delta_{\rm EDE}}{1 + w_{\rm EDE}} \right) &= -\left(\theta_{\rm EDE} + h'_{\delta}\right) - 3\frac{a'}{a} c_s^{-2} \right) \left(\frac{\delta_{\rm EDE}}{1 + w_{\rm EDE}} + 3\frac{a'}{a} \frac{\theta_{\rm EDE}}{k^2} \right) \\ \theta'_{\rm EDE} &= -\frac{a'}{a} \left(1 - 3c_s^2 \right) \theta_{\rm EDE} + c_s^2 k^2 \frac{\delta_{\rm EDE}}{1 + w_{\rm EDE}} + k^2 h_v, \\ c_a^2 &= \frac{\rho'_{\rm EDE}}{P'_{\rm EDE}} = w_{\rm EDE} - \frac{1}{3} \frac{dw_{\rm EDE}/d\ln a}{1 + w_{\rm EDE}} \end{split}$$

$$\begin{split} \frac{d}{d\eta} \left(\frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} \right) &= -\left(\theta_{\text{EDE}} + h_{\delta}'\right) - 3\frac{a'}{a} (c_s^2) c_a^2 \right) \left(\frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} + 3\frac{a'}{a} \frac{\theta_{\text{EDE}}}{k^2} \right) \\ \theta'_{\text{EDE}} &= -\frac{a'}{a} \left(1 - 3c_s^2 \right) \theta_{\text{EDE}} + c_s^2 k^2 \frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} + k^2 h_v, \\ c_a^2 &= \frac{\rho'_{\text{EDE}}}{P'_{\text{EDE}}} = w_{\text{EDE}} - \frac{1}{3} \frac{dw_{\text{EDE}}/d\ln a}{1 + w_{\text{EDE}}} \end{split}$$

Extensions:

 $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + i \bar{\psi} D \psi - V(\phi) - m_{\rm DM}(\phi) \bar{\psi} \psi$ • Coupling DM & EDE to address S_8 Karwal ++ 2106.13290 $m_{
m DM}(\phi) = m_0 e^{c\phi/M_{
m pl}}$ McDonough ++ 1811.04083 Leads to enhanced DM growth: $G_{\text{eff}} = G_N \left(1 + \frac{2c^2k^2}{k^2 + a^2d^2V/d\phi^2} \right)_{Bean ++ 0808.1105}$ $S = \int \mathrm{d}^4 x \sqrt{-g} \left[rac{F(\sigma)}{2} R - rac{g^{\mu
u}}{2} \partial_\mu \sigma \partial_
u \sigma - \Lambda - V(\sigma) + \mathcal{L}_m
ight]$ Modified gravity Adi and Kovetz 2011.13853 Abellan, Braglia++ 2308.12345 $V(\sigma) = \lambda \sigma^4/4$ • Non-minimal coupling to address $S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2 R(g)}{2} - \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi - V(\phi) \right]$ fine tuning Sakstein and Trodden 1911.11760 Gonzalez, Liang, Sakstein and Trodden 2011.09895 $+ S_{\nu}[\tilde{g}_{\mu\nu}],$ $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = rac{eta}{M_{
m Pl}}\Theta(
u),$ 0.20 Lin, McDonough, Hill, and Hu 2212.08098 0.15 0.10 $m_{
m DM}(\phi)=m_0\left(1+grac{\phi^2}{M_{
m rl}^2}
ight)$ 0.05 $V_{
m eff}pprox V(\phi) + g rac{\phi^2}{M^2}
ho_{
m DM}$ $\theta = \phi/f$

'Model independent' approaches?

Very Early Dark Energy

Sobotka, Erickcek, and TLS, in prep.

Akshay Slides

Kination (Axion Kination)

The story in Pictures

Explicit breaking of PQ symmetry sources fast axion rotation

- Complex PQ scalar field
- High-dim operators explicitly break PQ symmetry
- Induces axion rotation, giving the axion "angular momentum"

redit: Raymond Co and Keisuke Harigaya

The story in Pictures

Conservation of charge dictates cosmology

$$V(P) = (m_S^2 - c_H H^2)|P|^2 + \left(A \frac{P^n}{M^{n-3}} + \text{h.c.}\right) + \frac{|P|^{2n-2}}{M^{2n-6}}.$$

Rotation of PQ field corresponds to PQ charge

$$n_{PQ} = i(\dot{P}^*P - \dot{P}P^*) = \dot{\theta} \left(f_a^2 + S^2 \right)$$

• Scaling of energy density and rotational charge fixes

$$m_S^2 |P|^2 \propto a^{-3}$$
 $n_{PQ} = \dot{\theta} |P^2| \propto a^{-3}$ $\left\langle \dot{\theta} \right\rangle = const \simeq m_S$

• Thus for P >> fa the energy density scales like matter

The story in Pictures

Conservation of charge dictates cosmology

- As P -> fa comoving charge conservation implies $n_{PQ} = \dot{\theta} |f_a^2| \propto a^{-3} \rightarrow \dot{\theta} \propto a^3$
- Thus the energy density scales as

$$\rho_{PQ} = \dot{\theta}^2 |f_a^2| \propto a^{-6}$$

• Thus once the field rotates near the minima, energy density scales as kination

The story in pictures

Matter followed by Kination

The story in pictures

Matter followed by Kination

High scale axion kination - baryogenesis

 Axion rotations source chiral asymmetry which sources baryogenesis (spontaneous baryogenesis)

Axiogenesis, Co and Harigaya

Lepto-axiogenesis

High scale axion kination - DM production DM production comes from parametric resonance or KMM

• Parametric Resonance from saxion oscillations can produce

$$Y_a \simeq 20 \left(\frac{S_i}{10^{16} \text{GeV}}\right)^2 \left(\frac{m_S}{100 \text{TeV}}\right)^{1/2}$$

- However axions produced are warm and warmness constraints apply
- Kinetic Misalignement mechanism

2

Quadratic Potential

Results

Signatures of high scale kination

Enhancement of gravitational waves

- Gravitational waves produced from inflation have a flat spectrum.
- Modes outside horizon are frozen, behave like radiation upon horizon entry

$$k \simeq H \rightarrow \rho_k \propto H^2 M_{\rm pl}^2$$

 However during matter and kination dominated era, radiation density fraction is much smaller enhancing GW spectrum

Signatures of high scale kination

Enhancement of gravitational waves - Inflation

GW Waves

Enhancement of Gravitational Waves - Cosmic Strings

Low Scale Kination

H0 tension

- Like EDE, a small amount of axion kination around recombination helps alleviate the Hubble tension
- Reduces H0 tension without increasing S8 tension

Conclusion

Why is Axion Kination Cool?

- Explicit breaking of PQ symmetry sources fast axion rotation.
- Can explain strong CP problem, neutrino masses, baryogenesis and dark matter
- Axion rotations can induce a modified cosmology, giving rise to early matter domination followed by kination
- Modifies matter power spectrum, gravitational waves spectrum providing a unique signature that will be probed by future experiments.
- Can reduce H0 tension without increasing S8 tension
- First "reasonable" model for Kination
- Feature of early matter domination, followed by Kination gives unique signature
- Exit from matter domination without entropy production