Gravitational Wave Signals in Modified Cosmologies

Kimberly Boddy, University of Texas at Austin Lauren Pearce, James Madison University

Probing Non-Standard Cosmologies with the Stochastic GW Background

- What contributes to the stochastic GW background?
 - Astrophysical processes (e.g., BH & neutron star mergers)
 - Cosmology: inflation, cosmic strings, etc.
 - GW are induced by curvature perturbations at second order!

K. Ananda, C. Clarkson, D. Wands, Phys.Rev.D 75 (2007) 123518

- Key Questions:
 - What does this signal look like?
 - How does the cosmological history of the universe affect these?

Curvature-Induced Gravitational Waves

Why interesting? Resonance-like enhancement!

First pointed out in K. Ananda, C. Clarkson, D. Wands, Phys Rev D 75 (2007) 123518 Modified curvature power spectrum: $\mathcal{P}_{\zeta}(k) \propto \delta(k - k_{\mathrm{in}})$

Why? Oscillating gravitational potential ↔ oscillating sound wave resonantly produces GW

Inomata et. al. Phys.Rev.D 101 (2020) 12, 123533

Curvature-Induced Gravitational Waves

- Option 1: Modify $\mathcal{P}_{\zeta}(k)$ like in Ananda et. al. (Will return to this later)
- Option 2: Use inflationary curvature spectrum-How does cosmological evolution affect it?
 - Consider an early matter dominated epoch

Induced GW with Early Matter Dominated Epoch

Depends sensitively on how the eMD epoch ENDS

Left: Slow end- signal is suppressed because of a cancellation between modes that enter in MD & RD

K. Inomata, K. Kohri, T. Nakama, T. Terada, JCAP 10 (2019) 071

Induced GW with Early Matter Dominated Epoch

Depends sensitively on how the eMD epoch ENDS

Right: Instantaneous end-Resonance-like enhancement!

K. Inomata, K. Kohri, T. Nakama, T. Terada, Phys.Rev.D 100 (2019) 043532

This Resonance...

• My question:

Instantaneous \rightarrow infinite slope \rightarrow signal depends on Φ' How sure are we that this is real???

Used tanh profile for matter decay rate M. Pearce, L. Pearce, G. White, C. Balazs, JCAP 06 (2024) 021

This Resonance...

• My question:

Instantaneous \rightarrow infinite slope \rightarrow signal depends on Φ' How sure are we that this is real???

Used tanh profile for matter decay rate M. Pearce, L. Pearce, G. White, C. Balazs, JCAP 06 (2024) 021

Cause: Sudden decay leads to oscillating sound waves in radiation bath Resonantly produce GW *K. Inomata et. al. Phy.Rev.D 101 (2020) 12, 123533*

How Can We Get a "Fast" Phase Transition?

- Need heavy objects whose decays speed up:
 - PBHs: K. Inomata et. al. Phy.Rev.D 101 (2020) 12, 123533
 - Q-balls: G. White., L. Pearce, D. Vagie, A. Kusenko PRL 127 (2021) 18, 181601

Temp scales: eMD starts around 10^4 GeV, ends around 10^2 GeV.

How Can We Get a "Fast" Phase Transition?

- Need heavy objects whose decays speed up:
 - PBHs: K. Inomata et. al. Phy.Rev.D 101 (2020) 12, 123533
 - Q-balls: G. White., L. Pearce, D. Vagie, A. Kusenko PRL 127 (2021) 18, 181601
 - Can be embedded in e.g., high scale SUSY
 M. Flores et. al. Phys.Rev.D 108 (2023) 12, 123002

What About Modifying Curvature Power Spectrum?

- Need to modify curvature power spectrum on superhorizon scales
- Phase transitions give $\mathcal{P}_{\zeta} \propto k^3$
 - M. Lewicki, P. Toczek, and V. Vaskonen, arXiv:2402.04158

What Else?

- Work has also been done with kination instead of early matter domination
 - G. Domenech, S. Pi, M. Sasaki, JCAP 08 (2020) 017
- Connects to pulsar timing arrays
 - E.g., K. Harigaya, K. Inomata, T. Terada Phys Rev D 108 (2023) 12, 123538

Landscape of GW Observations

Stochastic GW Background (low frequency)

Sources:

- Population of unresolved supermassive black hole binaries
- Early Universe physics (e.g., inflation, phase transitions, topological defects, enhanced scalar perturbations)

Observations:

- Current: evidence from pulsar timing array (PTA) experiments
- Upcoming: LISA will probe higher frequencies

PTAs

Figure credit: Andreas Freise

PTA Experiments

Evidence for SGWB

NANOGrav (2306.16213)

New-Physics Interpretation

NANOGrav (2306.16219)

Astrophysics interpretation

Back-Up Slides (Lauren)

Formalism (1)

Conformal Newtonian Gauge (using conformal time η):

$$ds^{2} = -a^{2} \left(1 + 2\Phi\right) d\eta^{2} + a^{2} \left(\left(1 - 2\Psi\right)\delta_{ij} + \frac{1}{2}h_{ij}\right) dx^{i} dx^{j}$$

Fourier components of tensor modes satisfy equation of motion:

$$h''_{\vec{k}}(\eta) + 2\mathcal{H}h'_{\vec{k}}(\eta) + k^2h_{\vec{k}}(\eta) = 4S_{\vec{k}}(\eta)$$

with the source expressed in terms of the gravitational potential:

$$S_{\vec{k}} = \int \frac{d^3q}{(2\pi)^{3/2}} e_{ij}(\vec{k}) q_i q_j \left(2\Phi_{\vec{q}} \Phi_{\vec{k}-\vec{q}} + \frac{4}{3(1+w)} \left(\mathcal{H}^{-1} \Phi_{\vec{q}}' + \Phi_{\vec{q}} \right) \left(\mathcal{H}^{-1} \Phi_{\vec{k}-\vec{q}}' + \Phi_{\vec{k}-\vec{q}} \right) \right)$$

GWs are a second order effect

Following 1804.08577; earlier references mentioned later

Formalism (2)

Solve via Green's function approach: $a(\eta)h_{\vec{k}}(\eta) = 4 \int^{\eta} d\bar{\eta} G_{\vec{k}}(\eta, \bar{\eta})a(\bar{\eta})S_{\vec{k}}(\bar{\eta})$

$$\mbox{Green's function solves:} \ \ G_{\vec{k}}''(\eta,\bar{\eta}) + \left(k^2 - \frac{a''(\eta)}{a(\eta)}\right) G_{\vec{k}}(\eta,\bar{\eta}) = \delta(\eta - \bar{\eta})$$

Gravitational potential obeys: $\Phi_{\vec{k}}''(\eta) + \frac{6(1+w)}{(1+3w)\eta} \Phi_{\vec{k}}'(\eta) + wk^2 \Phi_{\vec{k}}(\eta) = 0$

Express in terms of transfer function $\Phi_{\vec{k}} = \Phi(k\eta)\phi_{\vec{k}}$

which is normalized to 1 at early times and

$$\left\langle \phi_{\vec{k}}\phi_{\vec{k}'} \right\rangle = \delta(\vec{k} + \vec{k}') \cdot \frac{2\pi^2}{k^3} \left(\frac{3+3w}{5+3w}\right)^2 \mathcal{P}_{\zeta}(k)$$

Following 1804.08577; earlier references mentioned later

Formalism (3)

Putting it all together, the GW power spectrum is:

$$\mathcal{P}_{h}(\eta, k) = 4 \int_{0}^{\infty} dv \int_{|1-v|}^{1+v} du \left(\frac{4v^{2} - (1+v^{2} - u^{2})^{2}}{4vu} \right)^{2} I^{2}(v, u, x) \mathcal{P}_{\zeta}(kv) \mathcal{P}_{\zeta}(ku)$$
where $I(v, u, x) = \int_{0}^{x} d\bar{x} \frac{a(\bar{\eta})}{a(\eta)} kG_{k}(\eta, \bar{\eta}) f(v, u, \bar{x})$

and the source is

$$\begin{split} f(v,u,\bar{x}) &= \frac{6(w+1)}{3w+5} \Phi(v\bar{x}) \Phi(u\bar{x}) + \frac{6(1+3w)(w+1)}{(3w+5)^2} \left(\bar{x} \partial_{\bar{\eta}} \Phi(v\bar{x}) \Phi(u\bar{x}) + \bar{x} \partial_{\bar{\eta}} \Phi(v\bar{x}) \Phi(v\bar{x}) \right) \\ &+ \frac{3(1+3w)^2(1+w)}{(3w+5)^2} \bar{x}^2 \partial_{\bar{\eta}} \Phi(v\bar{x}) \partial_{\bar{\eta}} \Phi(u\bar{x}) \end{split}$$

Following 1804.08577; earlier references mentioned later