

Discussion: "Connections to Fundamental Theory"

Gary Shiu

Cosmic Expansion and Fundamental Theory

In realizing cosmic expansion, having a fundamental theory is both a blessing and a curse:

• String theory has too many scalars: if not stabilized, they could lead to varying coupling constants, 5-th force, and mess up BBN (unless $m \gtrsim 30 \text{ TeV}$).

-
- Cosmic acceleration is often driven by scalars (inflaton, quintessence,…). Fundamental theory such

as string theory has many scalars (and axions, hence axiverse).

• These scalars can also alter cosmic expansion histories (moduli dominated non-thermal history, EMD, stasis, …). Cosmology before BBN is the Wild West!

• Why most scalars are stabilized while one (or a few) is dynamical? Who order the mass hierarchy? Naturalness? Does string theory suggest a departure from the simple single field scenarios?

• String theory provides a UV complete framework to address various naturalness problems: Snowmass white papers: [2203.07629 \[hep-th\]](https://inspirehep.net/literature/2052446), [2204.01742 \[hep-th\]](https://inspirehep.net/literature/2063384), Review: [2401.01939 \[hep-th\]](https://inspirehep.net/literature/2743274).

• **Scalars in string theory have a second role: Dine-Seiberg problem.**

Dine-Seiberg Problem

• There are no free parameters in string theory: coupling constants are vevs of scalar fields.

• A vacuum exists only if terms of different order compete. A de Sitter vacuum requires at least 3

If different order terms compete to give a minimum, why aren't higher order terms important?

-
- competing terms.
-
-

• The vevs of scalar fields are the perturbative expansion parameter, e.g., $g \sim \langle \exp(-\phi) \rangle$.

• The Dine-Seiberg problem: difficulty in finding parametrically controlled vacua. (LVS? KKLT? DGKT?).

Cosmic Acceleration inflaton field (*t*) government the energy density of the energy den

- of inflationary expansion still to occur. By the uncertainty principle, arbitrarily principle, arbitrarily precise timing is \mathcal{L} notus on **cosmic acceleration**, icaving alconative cosmic cxp
- variance, so the inflation will have speaked inflation (only).
	-
- **Inflation:** Assuming that other than the inflaton, all moduli are stabilized, are we done?

• I'll focus on **cosmic acceleration**, leaving alternative cosmic expansion histories to Jim. • Observations suggest two accelerating phases: **inflation** (early), & **dark energy** (now). • Hurdles to embed these two accelerating phases into string theory are somewhat different. local di↵erences in the time when inflation ends, *t*(x), so that di↵erent regions of space inflate

Slow roll conditions:

$$
\epsilon_V = \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1, \quad |\eta_V| = |M_P^2 \frac{V''}{V}| \ll 1
$$

Dimension 6 operators

$$
\mathcal{O}_6 = c_1 \frac{V(\phi)}{\Lambda_{UV}^2} \quad \rightarrow \quad \Delta \eta \sim \mathcal{O}\left(\frac{M_P}{\Lambda_{UV}}\right)^2,
$$

 Λ_{UV} = KK scale, string scale, Planck scale,...

Primordial Gravitational Waves

• Models of inflation that generate detectable gravitational waves require $V(\phi)$ to be nearly flat over a super-Planckian field range:

 $\Delta \phi \gtrsim 1$

• Near future experiments e.g. CMB-S4, Simons Observatory, LiteBIRD are reaching the 10^{-3} level.

$$
\mathcal{L}_{\text{eff}}[\phi] = \frac{1}{2}(\partial \phi)^2 - \frac{1}{2}m^2 \phi^2 \left(1 + \sum_{i=1}^{\infty} c_i \frac{\phi^{2i}}{\Lambda^{2i}} + \cdots \right)
$$

$$
\left(\frac{r}{0.01}\right)^{1/2} M_{\text{Pl}} \qquad \qquad \text{[Lyth '96]}
$$

But Riess suspects that the mystery can't be solved by observations alone. "We won't really resolve it until some brilliant person, the next Einstein-like person, is able to get the idea of what's going on," he said.

So he issued **a plea to the theorists**: "Keep working," he said. "We need your help. ... It's a very juicy problem, it's hard, and **you'll win a Nobel Prize if you figure it out. In fact, I'll give you mine.**"

Photo: Belinda Pratten, Australian National University

Brian P. Schmidt

Photo: Homewood Photograph

Adam G. Riess

Nobel Prize 2011

Saul Perlmutter

Dark Energy

Photo: Roy Kaltschmidt. Courtesy: Lawrence Berkeley National Laboratory

- a de Sitter minimum,
- a de Sitter maximum, or
- a runaway potential with $\epsilon \equiv -$.
-
-*H* $\frac{1}{H^2}$ < 1

Current cosmic acceleration can be realized by:

If the universe underwent a rolling phase before, why not again? (main hurdle: 5-th force constraint)

Unlike inflation which needs to last 60 e-folds to solve the flatness & horizon problems, the current acceleration may last only an e-fold or less.

Recent DESI results gave a tantalizing hint of varying dark energy, though it is too early to tell.

Generally $\epsilon \neq \epsilon_V$ due to non-negligible kinetic energy. How do we bound ϵ w/o knowing on-shell solutions?

Bounds on late-time acceleration and cosmological attractors

Flavio Tonioni UW -Madison Physics \rightarrow KU Leuven

Hung V. Tran UW-Madison Math

[STT1]: ``Accelerating universe at the end of time,'' PRD **108**, no.6, 063527 (2023) [\[2303.03418\]](https://inspirehep.net/literature/2639032). [STT2]: ``Late-time attractors and cosmic acceleration," PRD **108**, no.6, 063528 (2023) [\[2306.07327\]](https://inspirehep.net/literature/2668778). [STT3]: ``Collapsing universe before time," JCAP **05**, 124 (2024) [\[2312.06772\].](https://inspirehep.net/literature/2735879) [STT4]: ``Analytic bounds on late-time axion-scalar cosmologies," [\[2406.17030\]](https://inspirehep.net/literature/2802035).

Asymptotic Dark Energy Field-space boundaries

- Could the current acceleration be realized by rolling towards the asymptotic regions of the landscape?
- Does not require terms of different order to compete, in contrast to the Dine-Seiberg problem for vacua.
- A tower of states becomes light as we approach the asymptotic. Entropy bound suggest that the potential has an exponential falloff [Ooguri, Palti, GS, Vafa].
- But solving multi-field dynamics is much more difficult than taking derivatives of potential!
- As in many dynamical systems, the late-time regime exhibits some universal behaviors. This allows us to prove bounds on acceleration [GS, Tonioni, Tran].

explain small numbers in Nature?

• Given a multi field quintessence model, how do we diagnose if it can support acceleration

- Λ α donou $\frac{1}{l}$, $\frac{1}{l}$, $\frac{1}{l}$ $\frac{1}{l}$ $\frac{1}{l}$ sible critical points of the dynamical system of inter
	- without solving for the time-dependent solutions? ([STT1, STT2].
	-
	- models, the bounds we derived continue to apply [STT4].

• We consider scalars rolling towards the field space boundary: axions with a compact field space are assumed to be stabilized above. The saxions can then be canonically normalized.

• In the presence of dynamical axions, the field space metric is curved but in certain classes of

Multi-field Quintessence canonically-normalized scalar fields *^a*, for *a* = 1*,...,n*,

• String theoretical potentials generically take the form (also argument by *[Ooguri, Palti, GS, Vafa]*):

- $\sum_{i=1}^{n}$ rameter with only knowledge of the dimension of spaceare subject to a scalar potential of the form of the
	- $V = \sum$ *i*=1

after canonically normalizing the scalar fields to ϕ^a , $a = 1,...,n$. $T_{\rm eff}$ main results of our paper are the following. (i) ϵ and canonically normalizing the scalar helds to ψ , $u = 1,...,n$.

$$
\sum_{i=1}^{m} \Lambda_i e^{-\kappa_d \gamma_{ia} \phi^a}.
$$

• Λ_i , γ_{ia} depend on the microscopic origin of V_i , $\kappa_d = d$ -dim. gravitational coupling. Potentials from e.g. internal curvature, fluxes, branes/O-planes, Casimir-energy, etc take this form. \mathbf{r}_i the microscopic origin of V κ_i-d -dim aravitational ϵ $\frac{d}{d}$ and morooopic dright of $\frac{1}{d}$, $\frac{d}{d}$ $-\frac{d}{d}$ and gravitational coupling. curvature, includes, branes/O-pianes, Gasimin-energy, etc tan

Summary of Results

• Treating the universe as a dynamical system, we bound the rate of time variation of the Hubble parameter at late time [STT1]. The bound provides a useful diagnostic for dark energy models.

• Our bound when applied to string theoretic constructions identifies a generic obstacle to acceleration if the d -dim. dilation is one of the rolling fields. We also suggest several ways out.

• We prove conditions under which scaling solutions are **late-time attractors**. Moreover, we

-
-
- prove that scaling solutions **saturate** our bound on ϵ [STT2].
-
-
- As a spinoff, we derived analogous bounds on ekpyrosis [STT3].

• Our results apply irrespective of whether the potential is generated classically or quantum mechanically, whether the kinetic term is negligible, & whether some potential term dominates.

• This program can be extended to quintessence models with dynamical axions as well [STT4].

Cosmological Equations general class of potentials subsumes e.g. generalized as-

 \cdot Non-compact d -dim. spacetime is characterized by the FLRW metric: sisted inflation [5, 6]. Let the non-compact *d*-dimensional lct *d*-dim. spacetime is characterized by the FLRW metric:

• Scalar field equations and Friedmann equations: atione and Eriodmann caugtione: quachono and if no annanni o quachono. Friedmann equations: The scalar-field and Friedmann equations re $\dot H$ $-\frac{1}{D} < 1$ Casimir-energy terms. In fact, here the *d*-dimensional

<u>.</u>
-

$$
d \widetilde{s}_d^2 = - \mathrm{d} t^2 + a^2(t) \, \mathrm{d} l_{\mathbb{R}^{d-1}}^2,
$$

• Hubble parameter: $H \equiv -$. The proper diagnostic for cosmic **acceleration** is $\boldsymbol{\dot{\chi}}$ *a a* with the \dot{a} = \dot{a} = \dot{a} . reformulation and proper diagnosity for cosmic acceleration is *Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI 53706, USA* \boldsymbol{a}

to be distinguished from the slow-roll parameter
$$
\epsilon_V = \frac{d-2}{4} \kappa_d^2 \left(\frac{\nabla V}{V}\right)^2
$$
.

$$
\ddot{\phi}^a + (d-1)H\dot{\phi}^a + \frac{\partial V}{\partial \phi_a} = 0,
$$

$$
\frac{(d-1)(d-2)}{2}H^2 - \kappa_d^2 \left[\frac{1}{2}\dot{\phi}_a\dot{\phi}^a + V\right] = 0,
$$

$$
\dot{H} = -\frac{\kappa_d^2}{d-2} \left[\frac{1}{2}\dot{\phi}_a\dot{\phi}^a - V\right] - \frac{d-1}{2}H^2,
$$

$$
\ddot{\phi}^a + (d-1)H\dot{\phi}^a + \frac{\partial V}{\partial \phi_a} = 0,
$$

$$
\frac{(d-1)(d-2)}{2}H^2 - \kappa_d^2 \left[\frac{1}{2}\dot{\phi}_a\dot{\phi}^a + V\right] = 0,
$$

$$
\dot{H} = -\frac{\kappa_d^2}{d-2} \left[\frac{1}{2}\dot{\phi}_a\dot{\phi}^a - V\right] - \frac{d-1}{2}H^2,
$$

 $\epsilon \equiv -$ *H* $\frac{1}{H^2}$ < 1

Hung V. Tran*‡*

Cosmology as a Dynamical System Cosmology as $\frac{1}{x}$ lynamica u ∪yo 1 <u>ici il provincia di controlle di</u>
Electronic

 \sim 1000110093 do d Dyns
• It is convenient to work with the rescaled variables:

given schematically as follows:

-
- Friedmann equation also takes a simple form:

$$
\frac{d\vec{z}}{dt} = g(\vec{z}) , \qquad \text{where } \vec{z} \equiv (x^1, ..., x^n, y^1, ..., y^m, H)
$$

$$
x^{a} = \frac{\kappa_{d}}{\sqrt{d-1}\sqrt{d-2}} \frac{\dot{\phi}^{a}}{H}, y_{i} = \frac{\kappa_{d}\sqrt{2}}{\sqrt{d-1}\sqrt{d-2}} \frac{\sqrt{V_{i}}}{H}
$$

$$
\left(x\right) ^{2}
$$

 $= 20$

• The cosmological equations can be formulated in terms of an autonomous system of ODEs $\overline{1}$ $\overline{2}$ −
−2 ÷ −2 → ted in tern

• Among the above ODEs is $\epsilon = -\dot{H}/H^2 = (d-1)x^2$; strategy is to bound the kinetic energy. gy is:

$$
2 + \left(y\right)^2 = 1
$$

Geometric Bound on Cosmic Acceleration

• Define m vectors μ_i , one for each potential term with components $\left(\mu_i\right)_a = \gamma_{ia}$

Obstruction by the Dilaton

• String-theoretical potentials take the form: **String-theoretical potentials take the form**

- least three terms, not all of the same sign (e.g., from loop corrections). $\widetilde{\widehat{\mathcal{S}}}$ *δ* $\widetilde{\widehat{\mathcal{S}}}$ Ways out: 1) $\tilde{\delta}$ is stabilized; 2) $\tilde{\delta}$ is rolling but not in the asymptotic ways out: \bullet $\frac{1}{2}$ −2 Stac • lower bound on : ≥ t three terms, not all of the same sign (e.g., from loop corrections). • Ways out: 1) $\tilde{\delta}$ is stal −
−2 $(\text{red}; 2) \tilde{\delta}$ is n
ef the earne −
artisti
	- ⁴ (∞)² [≥] ⁴ ² • Non-universal couplings for other moduli: can $N \sim 10^{10}$ theory coupling coupling coupling coupling

 $\mathrm{X}_{1, d-1}$ $\delta k \sigma-\chi_{\rm E} \Phi \ =\ -\ \int_{{\bf x}_{\rm F}}\ \widetilde{*}_{1,d-1} \Lambda\, {\rm e}^{\kappa_d[\gamma_{\widetilde{\delta}}(\chi_{\rm E}) \delta-\gamma_{\widetilde{\sigma}}(\chi_{\rm E},r,k) \sigma]}\,,$ ̃ ̃ ρ $\delta-\gamma_{\tilde{\sigma}}($ $J_{{\rm X}_{1,d-1}}$

• The d -dim. dilaton δ is a linear combination of the 10d dilaton Φ and Einstein frame volume. Φ $\ddot{\cdot}$ √ Einstein f ran ⊧ volu

 \cdot While the field basis choice is not unique, d-dimensional dilaton δ has **universal properties**: $\widetilde{\widehat{\mathcal{S}}}$ \overline{r} nsional dila
 aton $\widetilde{\delta}$ has $d-c$ √
∽∕ unique, d-dimensional dilaton $\delta\,$ has ${\bf u}$ $\overline{\mathbf{r}}$ **1**∣

• Ways out: 1) δ is stabilized; 2) δ is rolling but not in the asymptotic regions; 3) V contains at *V* ̃ $\frac{1}{\sqrt{1-\frac{1$ ng but
n (e a **T** olling but not

• Non-universal couplings for other moduli: can use our bound to **constrain compactifications**. l: can use our pound to constrain compact

$$
S=-\int_{\mathcal{X}_{1,9}} [A_r\wedge\star_{1,9}A_r]\,\Lambda_{10,r}\,\mathrm{e}^{-k\sigma-\chi_{\rm E}\Phi}=-\int_{\mathcal{X}}
$$

RR fields are not weighed by $e^{-\chi_E \Psi}$ (effectively set $\chi_E=0$) but would not affect our argument. α re not weighed by $e^{-\chi_E\Phi}$ (effectively set $\chi_E^{}=0$) but would not α RR fields are not weighed by $e^{-\lambda E^\varphi}$ (effectively set $\chi_E=0$ $\tau^{\chi_E\Phi}$ (effectively set $\chi_F=0$) but would not affect our argument. $\ddot{}$

- $\widetilde{\widehat{\mathcal{S}}}$ + The d-dim. dilaton $\tilde{\delta}$ is a linear combination of the 10d dilaton Φ and Einstein **T**
- field basis choice is not unique, d-din \overline{a} \sim string-frame: , string-frame: , string-frame: , \sim ln The Theorem is chosen is not unit Ñ, \cdot While the field basis choice is \mathbf{r} √ ot unique,

$$
\gamma_{\widetilde{\delta}} = \frac{d}{\sqrt{d-2}} - \frac{1}{2}\chi_{\mathrm{E}}\sqrt{d-2} \quad \geq \frac{2}{\sqrt{d-2}} \quad \implies \qquad \epsilon \geq \frac{d-2}{4} \, (\gamma_{\infty})^2 \geq \frac{d-2}{4} \, \gamma_{\widetilde{\delta}}^2 \geq 1
$$

- = 0*.*
	- scale factor takes a power law form: *a*(*t*) ∼ *t p* solutions can be characterized and $a(t) \sim t^p$ If the rank of the *ia*-matrix matches the number of alo laului tanos d po wer la<mark>y</mark> \bm{v} r takes a power law form: $a(t) \thicksim t^{\mu}$ $\overline{}$
- critical points of the autonomous system: \bm{a} autonomous system: $\dot{x}^a = 0$ rolling-scalar solutions are general. Given the matrix @✓ = 0*,* $\sqrt{2}$ politics (10MOU @' = 0*,* the critical is dominated by the potential term, which \overline{X} *m m*
- **Analytic solution:** for rank $\gamma_{ia} = m$ $rank v =$ $m₁$ solutions exist of the solution of the tic solu[.] $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ = 0*.* ing the '-equation Analytic s **P**: for rank γ_i *d*
- field space trajectory: $\phi_*^a(t) = \phi_0^a +$ 2 *d* κ_d $\lfloor \sum_{i=1}^{\infty} \frac{1}{j} \rfloor$ the time evolution is consistent with dropping the same \cdot of time H ; trajectory. $\psi_*(\iota)=\psi_0\mp\frac{\epsilon}{\kappa_d}\left| \right. \angle$
- scale factor: \cdot scale-factor $p = \frac{4}{\sqrt{2}} \sum_{l=1}^{n} \sum_{l=1}^{n}$ $\int_a^b d-2 \left(1-\frac{1}{1-\frac{1$ \mathbf{I} such that the axionic term is such that the axionic term is \mathcal{S} $p =$ 4 $d-2$ $\sqrt{ }$
- The kinetic term & every potential term have the same parametric dependence in time: The kinetic term & every potential term have the same parametric dependence in time: terms at any time, it is consistent to neglect the axions. be kinetic

Scaling Solutions all these reasons, although it is hard to prove these reasons, although it is hard to prove that scales in the
These reasons, although it is hard to prove that scales in the prove that scales in the proven that scales in ing solutions always capture the inevitable late-time behavior of the complete solutions, they deserve a detailed rank *ia* = *m* and *n>m*, the scalar fields outnumber the scalar-potential terms, but then we can rotate the field-

ottroater behevier o anno amaolor bondviore.
"Oved in [STT2, STT4], $T(t) = T(t_0) \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $V_i(t) = V_i(t_0) \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ proved in [3112, 3114], going beyond earlier analysis
of linear stability proved in [STT2, STT4], allidu of linear stability. Late-time attractor behavior

 $\overline{\mathbf{u}}$ under the slow-roll approximation, by which one slow-roll approximation, by which one slow-roll approximation, $\overline{\mathbf{v}}$ rank *ia* = *m* and *n>m*, the scalar fields outnumber the $s_{\rm c}$ **a** *i j* . (III.3) . (III.3) . (III.3) . (II.3) .

No slow-roll:
$$
T(t) = T(t_0) \left(\frac{t_0}{t}\right)^2
$$
, $V_i(t) = V_i(t_0) \left(\frac{t_0}{t}\right)^2$ **Exercise 1.2.12**

\n- \n field space trajectory:\n
$$
\phi_*^a(t) = \phi_0^a + \frac{2}{\kappa_d} \left[\sum_{i=1}^m \sum_{j=1}^m \gamma_i^a (M^{-1})^{ij} \right] \ln \frac{t}{t_0}, \qquad M_{ij} = \gamma_{ia} \gamma_j^a
$$
\n
\n- \n scale factor:\n
$$
p = \frac{4}{d-2} \sum_{i=1}^m \sum_{j=1}^m (M^{-1})^{ij}.
$$
\n
\n- \n [Copeland, Liddle, Wands, '97]\n [Collinucci, Nielsen, Van Riet, '04]\n
\n

ne parametric dependence i m & every potential term have the same parametric dep

No slow-roll:
$$
T(t) = T(t_0) \left(\frac{t_0}{t}\right)^2
$$
, $V_i(t) = V_i(t_0) \left(\frac{t_0}{t}\right)^2$ **l.e.**

• The cosmological autonomous system admits scaling solutions ($\epsilon =$ constant $\;>0$): and cosmological autonomous system admits scaling solutions ($\epsilon = \text{constant} > 0$). ical autonomous system admits scaling solutions ($\epsilon=$