

Optimization of the Muon Tight WP for the ATLAS experiment

YONGWEN ZHENG

KEVIN NELSON

30 JULY 24

The ATLAS Detector in Run 3

0 < **η** < 1.05 **Proton-proton collision** with \sqrt{s} = 13.6 TeV barrel New Small Wheel (NSW) barrel toroid magnet muon chambers muon chambers Generate lots of particles with muon final state Tracking system: Inner detector (ID) endcap Pixel Detector muon chambers inner detectors $\eta > 1.4$ Semiconductor Tracker Transition Radiation Tracker Muon spectrometer (MS) Muon drift tubes endcap toroid magnet endcap calorimeters **Types of muons:** barrel electromagnetic calorimeter ID: reconstructed from inner detector alone solenoid magnet ME: reconstructed from MS and track extrapolated barrel hadronic calorimeter EXPERIMEN

• CB: uses both ID and ME

to primary vertex

Muon Identification Motivation

Туре	Prompt	Non prompt	Light flavor
Main Decay Sources	t, H, W, Z	b, c jets, τ	π and K
Decay Time (s)	< 10 ⁻²²	< 10 ⁻¹³	< 10 ⁻⁸

- Want to study heavy particles (H, t) and increase pure sample of prompt muons
- Increase prompt muon acceptance and light flavor rejection
- Separating prompt and nonPrompt is work for isolation workgroup (not mine ⁽¹⁾)

Important Variables for Cuts

- Light flavor -> decay results in kink in track (distinguishable feature)
 - q/p significance : $|(q/p)_{ID} (q/p)_{ME}| / \sqrt{\sigma_{ID}^2 + \sigma_{ME}^2}$ imbalance between ID and MS on charge over momentum (track curvature)
 - ρ' : $|P_T^{ID} P_T^{ME}| / P_T^{CB}$ imbalance between ID and MS **momentum**
 - Reduced \mathcal{X}^2 : goodness of track fit
- The distribution of q/p significance and ρ' changes in different P_T and η regions
- Precision layers: need to make enough hits in the detector for lower uncertainty

Working Point:

- Different strictness on the selection
 - Loose (efficiency) < medium (low systematics) < tight (purity)

Optimizing Tight WP - ρ and q/p signif

Tight WP definitions:

- Medium ρ CB, precision layers > 1, medium WP, reduced χ^2 < 8
 - Medium and high P_T

efficiency comparison

map,

- 1D cut on ρ in discrete (η , P_T) bins satisfying prompt efficiency requirement (~96%)
- Low P_T (4 20 GeV)

New approach for L.F., efficiency

• 2D cut on ρ and q/p signif in discrete (η , P_T) bins satisfying prompt efficiency requirement (~96%) + maximizing light flavor decay rejection

Focus on ρ and q/p signif cuts :

 Last done with Run2 data in 2016. Pileup and the detector has changed significantly since then.

0.96/(1+TMath::Exp((-0.35*(x+4.))))

From WP internal note

Medium P_T - ρ Map

- The ρ cuts in the 1.1 < $|\eta|$ < 1.3 region are lower compared with the 2016 study due to a new chamber.
- The cuts at region |η| < 0.1 is also lower compared with the 2016 study. However, compared with |η| > 0.1 region, the ρ cut is significantly higher in both studies.

Medium P_T - efficiency by P_T Efficiency := # of tight muons / # of medium muons

- ~1% loss of efficiency in prompt acceptance
- Significantly better in L.F. rejection

Medium P_T - efficiency by η

- Lower prompt efficiency in $1.1 < \eta < 1.3$ (new chamber region); comparable efficiency in other regions
- Lower light flavor efficiency in 1.1 < η < 1.3 and η < 0.1; comparable efficiency in other regions

Low P_T - ρ and q/p Map

2016 low_pt $|\rho|$ cut map 2016 low_pt |q/p| cut map <u></u> 2.5 <u></u> 2.5 0.45 -4.5 -0.4 0.35 1.5 1.5 -0.3 3.5 0.25 0.2 0.5 0.5 0.15 2.5 04 0 18 20 muon p_{_} [GeV] 18 20 muon p_{_} [GeV] 10 12 14 16 12 16 6 8 6 8 10 14 Average ~0.17 Average ~3.3

2016 studies

• 2D cut on ρ and q/p significance in discrete (η , P_T) bins satisfying prompt efficiency requirement (~96%) + maximizing light flavor decay rejection

Low P_T - ρ and q/p Correlation

Examine ho and q/p Correlation with L.F. :

- Certain phase spaces have higher L.F.%
 - $\,\circ\,$ Cone at high |q/p| and medium $|\rho|$
 - Triangular area in the bottom
- Rectangular cut doesn't accurately reflect the correlation between ρ and q/p
- New approach
 - Places ρ and q/p cuts based on L.F. percent (e.g. < 20%)

Low *P*_{*T*} - efficiency by *P*_{*T*}

- Lower efficiency for both prompt and L.F. at lower P_T (< 8 10 GeV); higher efficiency at higher P_T
- The drop in L.F. efficiency is higher than prompt!
- Consider 1) different L.F. cut for different P_T or 2) generate ρ vs q/p L.F. for different P_T regions

Low P_T - efficiency by η

- Barrel: Better prompt efficiency and comparable L.F. rejection
- Transition: Comparable in L.F. rejection
- Further study in end cap -> Need binning in η

Next Steps

- Generate 2D ρ vs q/p light flavor percent maps changes for different P_T and η regions
- Uses different L.F. cuts for different region of the detector (barrel, transition, endcap)

Fun Time

Back Up

High P_T - ρ Map

- Smaller P_T binning is used for high P_T.
- The old plots used -1 for underflowing bins. For these values in the ratio plot, $|\eta|$ is set to 1.
- In the region $1.1 < |\eta| < 1.3$, the ρ cuts are lower compared with the 2016 plot.

High P_T - efficiency by P_T

Low statistics for high P_T region especially for light flavor

High P_T - efficiency by η

- Higher efficiency for prompt
- Low stats for light flavor