Study of Single Crystal Readout for the Development of Dual-Readout Calorimetry in Future e+/e- Collider Experiments

Jessaly Zhu

University of Michigan

30 July 2024

Energy Resolution of Calorimeters

- Calorimeters measure the energy deposited in particle showers
- Two types of showers: electromagnetic and hadronic
- Energy resolution
 - Crucial for accurate particle identification!
 - Energy resolution (ΔE/E) of 3-4% for 100 GeV jets is a benchmark for the precision study at future e+/e- colliders
- Large fluctuations of the EM/neutral component in hadronic showers and in energy sampling measurements
 - \rightarrow limits energy resolution of traditional calorimeters to 30-50%/ \sqrt{E}

How to improve energy resolution?

• Dual-Readout Calorimetry:

- Simultaneous scintillation and Cherenkov measurements
- Ability to compensate for large variations and nonlinear response from the invisible energy in hadronic showers
- \rightarrow better energy resolution \odot

Scintillation Radiation	Cherenkov radiation
 Photons emitted due to	 Photons emitted due to
relaxation of excited particles Isotropic: propagates in all	relativistic particles with v>c
directions Time delay in emission	polarizing the medium Directional Instantaneous

Emilie Roncali et al 2019 Biomed. Phys. Eng. Express 5 035033

The Calvision Project

A collaboration aiming to develop a crystal-based dual-readout electromagnetic calorimeter to complement a precision hadronic calorimeter.

For more information, visit CalVision | Detector R&D (fnal.gov)

April 2024 Test Beam Setup at DESY

April 2024 Test Beam Setup at DESY

Relevant components:

Goals of Test Beam

- Perform angular scan
- SiPM over-voltage scan
- Test different crystals and filters

Crystals analyzed:

PWO (Lead Tungstate)

- Produces scintillation and Cherenkov
- Filter in the rear
- Used to study separation of scintillation and Cherenkov

PbF2 (Lead Fluoride)

- Produces only Cherenkov
- No filters
- Used to extract Cherenkov properties

6

Objectives

- Perform noise stability analysis
- Angle, crystal, and filter affects on amplitude and rising edge
- Telescope Tracking Reconstruction

Noise Stability

Procedure:

- Take peak of each waveform and plot amplitude distribution
- Should see 2 distinct peaks: noise and signal fluctuations
- Fit a Gaussian to noise fluctuations
- Extract sigma
- Repeat for all angles and both crystals

Noise Stability

PbF2 no filter

- Noise is below 1 ADC/mV and stable ٠
- Independent of crystal, angle, and presence of filter •

Averaged Waveforms: PWO with filter in rear

- Slow rising edge due to time delay of scintillation emission
- See angle dependence in amplitude
- Filtered reduced signal by about 1/3
- Channel 0 has double the signal than other front channels

Averaged Waveforms: PbF2 no filter

- Cherenkov is instantaneous -> sharp rising edge
- Due to directionality of Cherenkov: front end has larger signals at negative angles and back end has larger signals at positive angles
- Channel 1 has overall smaller signals compared to other front channels

*Noise events removed except channel 6

Angle Dependence: PWO with filter in rear

- The peak value of signal fluctuations in amplitude distribution is taken at each angle
- Normalized by the value at 0 deg

Front End (no filter side)

 Symmetric due to no directionally from dominant scintillation component

Back End (filter side)

- Asymmetry observed
- Possible contributing factors
 - Cherenkov directionally
 - Photon loss due to coupling and transmission loss
- Further analysis needed

Angle Dependence: PbF2 no filter

Observations:

- Asymmetry between positive and negative angles due to Cherenkov directionality
- Consistent with expectations

Telescope Tracking

- Si-telescope used to track position of electron beam
- Essential for understanding any position dependence on shower development and response of SiPMs
- Made up of 6 planes (0-5) divided into 18.4 micron size pixels

Challenges:

- Misalignment between planes
- Multiple scattering and beam divergence effects
- More than 60% of events have more than 1 track due to large sampling window
- Noise needs to selected and filtered out

Goal:

 Assuming non-rotational misalignment, reconstruct tracks using chi-square minimization

Event_0_row

Telescope Tracking

- ✓ Selected single track events
- ✓ Filtered out noise hits
- ✓ Performed linear fit

In progress:

- Find residual between fit and hits
- Extract beam divergence and multiple scattering effects

July 2024 CERN Test Beam

- Participated in beam test
 - Set up
 - Data-taking shifts

Next steps

- Continue with tracking reconstruction
- Compare PWO from DESY with Fermilab data to understand the differences caused by the use of different SiPMs

lake como

18

russian food