○ FCC

ENERGY, LUMINOSITY, OPERATION SCENARIOS

Frank Zimmermann

FCC-hh Studies for the next European Strategy: kickoff meeting, 3 September 2024

Thanks to Michael Benedikt, Michelangelo Mangano, Ezio Todesco

Assumptions & possible parameter range

With present layout of the FCC, and after diligent optimization (by Massimo, Gustavo, and Thys), the following energies can be reached according to the dipole field:

Dipole field [T]	c.m. energy	Comment
12	72	not far above peak field of HL- LHC Nb ₃ Sn quadrupoles
14	84	Nb ₃ Sn or HTS
17	102	HTS
20	120	HTS

Increasing the c.m. energy beyond ~100 TeV, we will assume that the synchrotron-radiation power could not increase, beyond a total of about 4 MW (which must be removed from inside the cold magnets)

On the other hand, when decreasing the beam energy, one can hold either the synchrotron-radiation power (increasing current up to HL-LHC values) or the beam current constant. Also, the pile-up might need to be limited, e.g. to ~1000 events/crossing. We thus consider three scenarios for 12 T (0.5 A and 1.12 A beam current, the latter without or with pile-up levelling).

Finally, further overall lowering the synchrotron radiation power, by reducing the number of bunches, in order to restrict the total power consumption of the future FCC-hh, would decrease peak and integrated luminosity by the same factor.

- 1) A machine based on 12 T dipoles, with a beam current of 0.5 A as considered for the 16 T FCC-hh machine (F12LL).
- 2) A machine based on the same 12 T technology close to deployment, but with a higher beam current of 1.1 A, as considered for the HL-LHC (F12HL).
- 3) The same case as F12HL but limiting the pile up not to exceed a value of 1000 (F12PU).
- 4) A machine based on 14 T dipoles, and 0.5 A current (F14).
- 5) A machine based on High Temperature Superconductor (HTS) dipole magnets with a field of 17 T, just exceeding 100 TeV c.m., still with 0.5 A (F17).
- 6) A machine also based on High Temperature Superconductor (HTS) dipole magnets with a field of 20 T, and a beam current of 0.2 A, so that the synchrotron-radiation power is limited to about 2 MW / beam (F20).

Parameter	Unit	F12LL	F12HL	F12PU	F14	F17	F20	(HL-)LHC
c.m. energy	TeV	72	72	72	84	102	120	14
dipole field	Т	12	12	12	14	17	20	8.33
beam current	А	0.5	1.12	1.12	0.5	0.5	0.2	(1.12) 0.58
bunch popul.	10 ¹¹	1.0	2.2	2.2	1.0	1.0	0.4	(2.2) 1.15
bunches/beam		9500	9500	9500	9500	9500	9500	(2760) 2808
rf voltage	MV	30	30	30	35	43	50	(16) 16
longit. emit.	eVs	6.9	6.9	6.9	8.1	9.7	11.4	2.5
norm. tr. emit.	μ m	2.5	2.5	2.5	2.5	2.5	2.5	(2.5) 3.75
IP beta*	m	0.22	0.22	0.65	0.26	0.31	0.37	(0.15) 0.55
initial σ^*	μ m	3.8	3.8	6.5	3.8	3.8	3.8	(7.1 min) 16.7
initial L	nb ⁻¹ s ⁻¹	175	845	286	172	209	39	(50, lev'd) 10
initial pile up		580	2820	955	590	732	141	(135) 27
ΔE / turn	MeV	1.3	1.3	1.3	2.4	5.3	10.1	0.0067
SR power/beam	kW	650	1450	1450	1200	2670	2020	(7.3) 3.6
tr.ε damp'g time	h	0.68	0.68	0.68	0.43	0.24	0.15	25.8
init <i>p</i> -burnoff time	h	5.1	2.3	6.9	5.1	4.0	8.4	(15) 40

Luminosity over 24 h

Parameter	Unit	F12LL	F12HL	F12PU	F14	F17	F20	(HL-)LHC
initial L	nb ⁻¹ s ⁻¹	175	845	286	172	209	39	(50, lev'd) 10
initial pile up		580	2820	955	590	732	141	(135) 27
opt. run time	h	3.8	3.3	6.3	3.8	3.4	4.2	(18-13) ~10

Ideal integrated luminosity per day

