

FCC-hh simulation studies work ahead

Michele Selvaggi (CERN)

Outline:

- Recap philosophy for the CDR
 Benchmark studies
- What is missing? Ideas for future studies
 Physics ←→ Detectors/reconstruction
- How to get started?

Physics in the CDR

Select physics benchmarks in order to:

- help define/refine detector concepts
- focus where FCC-hh really makes a difference complementarity w.r.t HL-LHC/FCC-ee
 - Standard Model:
 - Higgs
 - Rare Higgs Decays (complementary to FCC-ee)
 - γγ, Ζγ, μμ, 4ł
 - Target production modes
 - ttH(bb), HH(bbyy) self-coupling
 - VBS V_LV_L production
 - H→ invisible
 - BSM:
 - high mass resonance benchmarks Z' \rightarrow XX (X=e, μ, τ, j, W, Z)
 - Disappearing tracks
- Much more 100 TeV physics was discussed in the 2017 Yellow Report <u>CERN-2017-003-M</u>

Wishlist

- Using the various benchmarks, explore impact of different:
 - c.o.m. energies 80-100-120 TeV
 - Iuminosities
 - and corresponding trade-offs and detector design implications
 - 80 TeV with 2x nominal luminosity or
 - 120 TeV with 0.5x nominal luminosity ?
 - beyond σ vs. \mathscr{L} considerations (500PU vs 3000PU !!)
- Review physics benchmarks and corresponding objects most affected by machine conditions in view of recent LHC experience
 - HH, ttH, VBS
 - identification: b/τ -tagging, forward jet tagging, photon fake-rate
 - resolution: m_{bb} , $m_{\tau\tau}$, m_{yy} , E_T^{miss}
 - triggering
 - High p_T :
 - **au**, W, H substructure vs extreme PU/collimation

Wishlist/open questions

- Explore novel calibration/reconstruction/pu subtraction techniques
 - identify clean control samples with large stats to calibrate critical objects and reduce systematics (e.g. γ -id with Z $\rightarrow \mu\mu\gamma$ samples) for robustness
 - jet flavor tagging in extreme pile-up, impact of tracking geometry
 - 5D Particle-Flow reconstruction and PU subtraction (p,E,t)
 - conventional/AI based
- Explore new detector designs/ technologies, e.g:
 - ambitious technologies (LXe/LYSO calorimetry, MAPs, quantum sensors, ..)
 - for some far from rad. hardness/cost requirements
 - but R&D should be pursued with such goals in mind
 - new designs:
 - low PU detectors targeting low p_T physics
 - ATLAS without Toroid, muon det. simply to tag
 - enough selectivity with track triggering at L1?

Wishlist (single H)

- Add "missing" physics channels, exploring new ideas to reduce dependence on detector assumptions and systematics:
 - $\circ \quad H {\rightarrow} WW, \, bb, \, cc, \, \tau\tau$
 - use ratios/double ratios
 - focus on boosted regime/similar production modes
 - For rate, object, lumi (partial or total) cancellations
 - \circ study tradeoff between boost (syst) and statistics

Single ratios:

- $WH(\gamma\gamma) / ZH(\gamma\gamma) \sim \kappa_{W,Z}$
- WH(γγ) / WZ(ee) ~ κ_W
- WH(bb,cc, $\tau\tau$) / WZ(bb,cc, $\tau\tau$) ~ κ_W
- ZH(bb,cc,ττ) / ZZ (bb,cc,ττ) ~ κ_{b,c,τ}
- $ttH(bb,\tau\tau) / ttZ(bb,\tau\tau) \sim \kappa_t$

Wishlist (HH)

- Self-coupling HH
 - Focus on most sensitive channels bbyy, $bb\tau\tau$
 - κ_λ sensitivity vs c.o.m / luminosity / detector assumptions (being covered)
 - (κ_{λ} , κ_{t}) scan with/without input from ttH/ttZ
 - (κ_v, κ_{2v}) sensitivity from VBF HH (4b)?
 - production mode dependent categorisation
 - \circ boosted regime to be revisited (bbbb, bbtr)
 - o bbZZ, bbWW
 - $\gamma\gamma\tau\tau$, .. ? unexplored

Plenty of space to contribute ...

Recent highlights: $HH \rightarrow bb\gamma\gamma$

De Filippis, Mastrapasqua, Taliercio, Stapf

80 < m_{bb} < 200 GeV 100 < m_{yy} < 180 GeV

Recent highlights: HH \rightarrow bbWW, bb $\tau\tau$

Case	
Scen I, stat. only	22.4%
Scen II, stat. only	25.8%
Scen II, syst. 1	30.7 %
Scen II, syst. 2	36.1 %
Scen II, syst. 3	42.7 %

Improved precision w.r.t to previous studies

To do:

- e.c.m /lumi/syst. variations
- combination with bbyy

 $bar{b} au_\ell au_h$ comparison

0.14

0.96

24.97

 S/\sqrt{B}

1.22

38.94

32.32

Signal

Background

 $\tau_{\ell}\tau_{h}$

In practice, how to proceed

• Two FCC-hh detectors cards are available in the Delphes repository:

- Latest Delphes samples will appear here
- Tutorial: FCCAnalyses
 - (for now focused on FCC-ee, will add an FCC-hh example soon)

Organisation

- General group: fcc-ped-hh-espp25
 - \rightarrow main group, general monthly meetings announcements

Coordinators: Christophe Grojean (DESY/CERN), Michelangelo Mangano, Matthew McCullough, Michele Selvaggi (CERN)

• Physics analysis group: fcc-ped-hh-physicsperformance-espp25

 \rightarrow physics analysis focussed monthly meetings (will be announced soon)

Coordinators: Birgit Stapf (CERN) and Angela Taliercio (NorthWestern). open call for a BSM analysis expert

Useful references

Physics at the FCC-hh CERN-2017-003-M

FCC-hh CDR CERN-ACC-2018-0058

FCC-hh Yellow Report (extended CDR) CERN-2022-002

Physics potential of a low-energy FCC-hh CERN-FCC-PHYS-2019-0001

Higgs Physics Potential of FCC-hh Standalone CERN-FCC-PHYS-2019-0002

FCC-hh Detector Requirements CERN Seminar

Conclusion

- Many interesting topics to contribute
 - physics reach
 - detector design and technologies, R&D
 - o optimisation of the machine layout
 - reconstruction , object identification, PU removal
 - software, AI ...
- FCC-hh is an order of magnitude more complex than HL-LHC
 - radiation hardness, amount of data real challenge
 - it will be the next generation hadron machine, R&D should not stop after HL-LHC
- Subscribe to fcc-ped-hh-espp25 and fcc-ped-hh-physicsperformance-espp25, mailing lists for more info to come:
 - monthly general meeting
 - focused analysis meeting, tutorials

Recap, how we proceeded for the CDR

- Baseline detector concept in Delphes
- Physics benchmarks
 - Higgs and SM
 - BSM

. . .

- Refined detector requirements
- Implementation on detector concept in full simulation
 - Study performance in full sim
- Improve detector parameterisation in Delphes

A detector concept that does the job ...

Guiding principles for FCC-hh detector

- Guiding principles were machine constraints and physics requirements
- This generic detector serves as a starting point for:
 - benchmarking physics reach of the machine
 - identify: challenges of building such an experiment
 - topics where R&D needed
- Most likely, this is not "THE OPTIMAL" detector.
- Maybe the optimal route will be to have several detectors optimized for specific signatures (low? vs high lumi)
- Also, expected improvements in technology may lead to more ambitious and less-conventional approaches of detector concepts in the future
 - most of the challenges common to any high energy/high luminosity project.

Collider options

name	F12LL	F12HL	F12PU	F14	F17	F20
√s (TeV)	72	72	72	84	102	120
current (A)	0.5	1.12	1.12	0.5	0.5	0.2
PU	600	3000	1000	600	700	150
SR power (MW) 2 beams	1.3	2.9	2.9	2.4	5.2	4.0
Lumi/yr (ab-1)	1	2	1.3	0.9	0.9	0.4

Limiting factor: 5MW synchrotron power

Tracking for flavor tagging in Delphes

TrackCovariance module

- Requires:
 - Geometry input
 - cylinder coaxial
 - planar disks
 - Magnetic field

p (GeV)