Sensitivity to polarized VBS and doubly charged Higgs bosons at future hadron colliders

A. Apyan¹, S. Kelson¹, <u>C. Mwewa²</u>, L. Nedic³, M. -A. Pleier², K. Potamianos³

Brandeis¹, BNL², Oxford³, Warwick⁴

FCC-hh meeting

3 September 2024

Vector Boson Scattering (VBS)

- → Important measurements to fully explore electroweak symmetry breaking
 - Longitudinally polarized VBS is unitarized by the presence the SM Higgs boson
- → Important window for physics beyond the Standard Model (SM)
- → Our study explores the scattering of two same-sign W bosons ($W^{\pm}W^{\pm}jj$) at the FCC-hh
 - W[±]W[±]jj has the largest electroweak to strong production cross-section ratio among VBS processes
 - Sensitive to BSM models such as the doubly charged Higgs model
- → We want to test the sensitivity to all W[±]W[±]jj polarization states at $\sqrt{s} = 27,50$ and 100 TeV
- \rightarrow Longitudinal VBS has not yet been observed at the LHC
- → Projections at the HL-LHC indicate a limited possibility of observation

Polarized W[±]W[±]jj at the LHC and HL-LHC

- → Access to longitudinally polarized $W^{\pm}W^{\pm}$ jj is challenging at the LHC
 - Cross-section is very small (less than 10% of the total W[±]W[±]jj scattering cross-section)

Polarized ssWW scattering at future hadron colliders

- \rightarrow This analysis only considers the fully-leptonic final state
- → Provides a more detailed follow-up to a <u>study</u> performed for the 2021 US Snowmass process
 - The expected sensitivity to longitudinal polarizations was found to be 17% for a 100 TeV FCC-hh machine

*

Delemination	Signal Strength			
Polarization	$\sqrt{s} = 27 \text{ TeV}$	$\sqrt{s} = 50 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$	
μ_{LL}	1 ± 0.39	1 ± 0.22	1 ± 0.17	
μ_{LT}	1 ± 0.11	1 ± 0.10	1 ± 0.04	
μ_{TT}	1 ± 0.08	1 ± 0.05	1 ± 0.02	

Boosted Decision Tree (BDT) variable to

distinguish the signal

Theory uncertainties

 Expected limits on doubly charged Higgs model parameters using the Georgi-Machacek (GM) model as the BSM benchmark

Signal and background samples

- → Both signal and background events are simulated using Madgraph5 v3.4.1 + Pythia v8.306
- → Delphes is used for the simulation of detector effects
- → Background processes include: W[±]W[±]jj QCD, W[±]Zjj QCD, W[±]Zjj EW, tZq processes
 - Detector-specific background processes (charge-flip, fakes) are ignored
- → These events are simulated for a 27 TeV, 50 TeV, and 100 TeV FCC-hh collider and are scaled to an expected integrated luminosity of 30 ab⁻¹
- → Events for longitudinal, transverse, and mixed $W^{\pm}W^{\pm}jj$ polarization were simulated separately
 - > Cross-sections were validated to ensure that they added up to the inclusive cross-section

Event selection and systematic uncertainties

Selection type	Requirement
Number of leptons	Exactly 2 same-charge leptons
Lepton p_T	$p_T \ge 15 { m GeV}$
Number of jets	≥ 2
Jet p_T	$p_T \ge 50 { m GeV}$
Di-lepton invariant mass	$M_{ll} \geq 60 { m GeV}$
Z-veto	$ M_{ll}-M_Z >10~{\rm GeV}$
Di-jet invariant mass	$M_{jj} \geq 2 { m TeV}$
Missing transverse momentum	$E_T^{miss} \ge 50 { m ~GeV}$

- Only electrons or muons are considered
- Sources of systematic uncertainties:
 - Luminosity uncertainty (2%)
 - MC statistical uncertainties
 - PDF+ α_s uncertainties
 - QCD scale uncertainties

Maximum-likelihood fit

- → BDTs were trained to isolate the individual polarizations and the backgrounds
- → We used a binned maximum-likelihood fit to the BDTs and the $\Delta \phi_{jj}$ distribution
- Sensitivity is determined from the uncertainty on the signal strength parameters \rightarrow Events Events W, W, 18 W, W 30 W, W, vs = 100TeV, pp, 30 ab -1 vs = 100TeV, pp, 30 ab W, W, FCC-hh Delphes Simulation FCC-hh Delphes Simulation W_TW_T 16 W_TW. 25 - Signal Region WW QCD Signal Region WW QCD 14 Pre-Fit tZq Pre-Fit tZq WZ EW WZ EW 12 20 WZ QCD WZ QCD /// Uncertainty Uncertaintv 10 15 10 5 2 Data / Pred. Data / Pred. 1.25 1.25 0.75 0.75 0.5 0.5 100 200 300 400 500 0.5 1 1.5 2 2.5 3

BDTFit3D

Δó

Sensitivity measurement

- Significantly improved sensitivity using the BDT variable
- Best sensitivity at 100 TeV
- Uncertainties are largely associated with the theory modelling
- Improved theoretical predictions may result in a better sensitivity

Polarization	Signal Strength: BDT		
	$\sqrt{s} = 27 \text{ TeV}$	$\sqrt{s} = 50 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
μ_{LL}	1 ± 0.20	1 ± 0.15	1 ± 0.13
μ_{LT}	1 ± 0.12	1 ± 0.085	1 ± 0.080
μ_{TT}	1 ± 0.12	1 ± 0.069	1 ± 0.062
	Signal Strength: $\Delta \phi_{jj}$		
μ_{LL}	1 ± 1.02	1 ± 0.62	1 ± 0.40
μ_{LT}	1 ± 0.45	1 ± 0.42	1 ± 0.14
μ_{TT}	1 ± 0.33	1 ± 0.26	1 ± 0.12

Doubly charged Higgs searches

→ The <u>GM model</u> is a BSM model with extended Higgs sectors

- Two isospin triplet scalar fields are added to the SM Higgs doublet
- Scalar potential includes 5-plet states of Higgs bosons: $H_5^{\pm\pm}$, H_5^{\pm} , H_5^0
- → ATLAS recently saw an excess of events corresponding to 2.5 σ at $m_{H_5^{\pm\pm}} = 450$ GeV.
 - > sin $\theta_H > 0.11 0.41$ for 200 < m_{H^{±±}} < 1500 GeV were excluded
- → In this analysis, we only look at five H^{±±}₅ masses; 800, 900, 1000, 2000 and 3000 GeV

Doubly charged Higgs searches at the FCC-hh

- → We perform a binned maximum-likelihood fit to the transverse mass (m_T) distribution of the dilepton and $E_{T,miss}$ system
- → We're still validating our results
- → So far there are indications of better limits than those at the LHC for higher $m_{H_5^{\pm\pm}}$ values

√s	$m_{H_5^{\pm\pm}}$	$\sin heta_H$ limit
100 TeV	900 GeV	0.15
100 TeV	2000 GeV	0.18
100 TeV	3000 GeV	0.24

Summary

- ♦ With an integrated luminosity of 30 ab⁻¹ at a 100 TeV FCC-hh, we can measure the cross-section of longitudinally polarized W[±]W[±]jj with a relative precision of 13% in the fully leptonic final state.
- The precision is largely limited by the theory modelling.
- The analysis is also progressing towards setting expected limits on doubly charged Higgs bosons in the context of the Georgi-Machacek model. We expect better limits than those set at the LHC.

Additional material

####