Heavy Neutral Leptons at the FCC-hh: Where do we stand?

Stefan Antusch

University of Basel, Department of Physics

FCC-hh studies for the next European Strategy: kickoff meeting

3.9.2024

Heavy Neutral Leptons – the right SM extension to explain the light neutrino masses?

There are no rightchiral neutrino states N_{Ri} in the Standard Model

→ N_{Ri} would be completely neutral under all SM symmetries

Adding N_{Ri} leads to the following extra terms in the Lagrangian density:

$$\mathcal{L} = \mathcal{L}_{\mathrm{S}M} - \frac{1}{2} \overline{N_{\mathrm{R}}^{i}} M_{ij} N_{\mathrm{R}}^{\mathrm{c}j} - (Y_{\nu})_{i\alpha} \overline{N_{\mathrm{R}}^{i}} \widetilde{\phi}^{\dagger} L^{\alpha} + \mathrm{H.c.}$$

M: HNL mass matrix

 Y_{ν} : neutrino Yukawa matrix (\rightarrow Dirac mass terms m_D)

In the SM + N_{Ri} : Heavy neutrino mass eigenstates (HNLs) interact due to mixing of N_{Ri} with the active SM neutrinos

$$\ell_{\alpha}^{+}$$

$$W = \theta_{\alpha} N$$

$$h = \theta_{e}, \theta_{\mu}, \theta_{\tau} N$$

$$h = \theta_{e}, \theta_{\mu}, \theta_{\tau} N$$

$$h = \theta_{e}, \theta_{\mu}, \theta_{\tau} N$$

$$\mu_{\alpha} = \frac{y_{\alpha}^{*}}{\sqrt{2}} \frac{v_{EW}}{M}, \quad \alpha = e, \mu, \tau$$

Stefan Antusch

Different opportunities at different collider types ...

cf. e.g. S.A., E. Cazzato, O. Fischer (arXiv:1612.02728)

Different LO production channels ...

... LNV and LFV channels great for suppressing SM background!

*) unambiguous (i.e. clear from final state), no SM background at parton level (but of course background with e.g. extra neutrinos)

**) at e+e- colliders: LNV signatures also possible, but only shows up in final state distributions; LFV signatures possible at loop level

Stefan Antusch

Stefan Antusch

FCC Physics Opportunities, Eur. Phys. J. C (2019) 79:474

Stefan Antusch

Landscape of the Seesaw Mechanism

New aspect: LNV induced by "Heavy Neutrino-Antineutrino Oscillations"

For intro, see e.g.: S.A., J. Hajer, J. Rosskopp (arXiv:2210.10738)

... so far not yet included in FCC-hh studies

Interaction states: Produced from W decay - "Heavy Neutrinos N" (together wilth l_{α}^+) - "Heavy Antineutrinos \overline{N} " (together wilth l_{α}^-)

They are superpositions of the mass eigenstates:

 $\overline{N} = 1/\sqrt{2}(iN_4 + N_5)$ $N = 1/\sqrt{2}(-iN_4 + N_5)$

Due to the mass splitting ΔM between the heavy mass eigenstates N₄ and N₅ \rightarrow propagation of interfering mass eigenstates induces oscillations between N and N ... which then decay into leptons (LNC) or into antileptons (LNV)

Stefan Antusch

Open question: For which HNL parameters can the FCC-hh discover HNLs with LNV?

Expectation: Oscillations and decoherence also govern discovery prospects for LNV at the FCC-hh

coloured lines: including decoherence effects which induce damping of the heavy neutrino-antineutrino oscillations S.A., J, Hajer, J. Rosskopp (arXiv:2307.06208)

Stefan Antusch

Thanks for your attention!

Recent developments on Heavy Neutrino-Antineutrino Oscillations

Madgraph patch available for including the heavy neutrino-antineutrino oscillations in collider simulations S.A., J. Hajer, J. Rosskopp (arXiv:2210.10738)

Oscillations resolvable for long-lived HNLs at the HL-LHC (confirmed for some benchmark points)
S.A., J. Hajer, J. Rosskopp (arXiv:2212.00562)

Calculation in QFT with external wave packets (including calculation of decoherence effects for HNLs at LHC)
 S.A., J. Rosskopp (arXiv:2012.05763)
 S.A., J. Hajer, J. Rosskopp (arXiv:2307.06208)

Decoherence effects improve the prospects for observing LNV for HNLs with masses above M_W (studied so far only for the LHC)

S.A., J. Hajer, J. Rosskopp (arXiv:2307.06208)

Recent developments on Heavy Neutrino-Antineutrino Oscillations

At FCC-ee, the heavy neutrino-antineutrino oscillations lead to oscillating final state asymmetries ... S.A., J. Hajer, B.M.S. Oliviera (arXiv:2308.07297)

... allowing to resolve the oscillations (and thereby discover LNV) for long-lived HNLs

For testable parameter region, see: S.A., J. Hajer, B.M.S. Oliviera (arXiv:2408.01389)