Scalar Rayleigh Dark Matter

Hadron colliders in the future experiments landscape

Giulio Marino

(Università di Pisa, INFN)

In collaboration with: Barducci, Buttazzo, Dondarini, Franceschini, Mescia, Panci

FCC-hh Studies for the next European Strategy: Kickoff meeting | 2024

Motivation

- Even if DM is neutral under EM \Rightarrow interactions with EW gauge bosons via higher dimensional operators
- DM-photon EFT classification in [1] we analyze effective interactions involving real scalar $SU(2)_L$ singlet dark matter particles with SM EW gauge bosons

$$\mathscr{L}_{\phi} = C^{\phi}_{\mathscr{B}} \phi^{2} B_{\mu\nu} B^{\mu\nu} + C^{\phi}_{\mathscr{W}} \phi^{2} W$$
$$\mathscr{L}_{\phi} = \phi^{2} \left(\mathscr{C}^{\phi}_{\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + \mathscr{C}^{\phi}_{ZZ} Z_{\mu\nu} Z^{\mu\nu} + \mathscr{C}^{\phi}_{\gamma Z} Z_{\mu\nu} \right)$$

First operators that appear

in the EFT expansion

Kickoff Meeting | 2024

[1] B. J. Kavanagh, P. Panci, and R. Ziegler JHEP 04 (2019) 089, [arXiv:1810.00033]

 $V^a_{\mu
u}W^{a,\mu
u}$ $_{\nu}A^{\mu\nu} + \mathscr{C}^{\phi}_{WW}W^{+}_{\mu\nu}W^{-,\mu\nu}$ Real scalar case

Motivation

Elusive DM scenario for DD

 \Rightarrow no couplings with lighter dof (q, \mathcal{G})

 \Rightarrow Loop suppressed cross sections

Kickoff Meeting | 2024

Interesting target for Indirect Detection probes • DM annihilates with γ

• FERMI works only up to $\mathcal{O}(500)GeV$

									٠	0	٠	٠	•	
			Ð	a	٠	•	٠	•	•	•	•	•		
			٠		•	٠	٠	٠	•	•	•	•	•	
	÷	0	٠	٠		٠	٠	٠	•	•	•			
	v		٠	٠	•	٠	•	٠	•	•	•	•		
	÷	٥	٠	٠	•	٠	٠	•	•	•	•	٠		
	٠	a	٠	٠	•	٠	٠	•	•	•	•	•	•	
		4		٥	•	٠	٠	•	•	•	•	•		
					٠	Ð	•	٠	٠	٠	•	•	•	

Motivation

Elusive DM scenario for DD

 \Rightarrow no couplings with lighter dof (q, \mathcal{G})

 \Rightarrow Loop suppressed cross sections

How do we test this scenario at colliders?

FCCee and FCChh

Could provide additional information about model in the coming years

Kickoff Meeting | 2024

2

Interesting target for Indirect Detection probes

- DM annihilates with γ
- FERMI works only up to $\mathcal{O}(500)GeV$

t the	2

UV completion?

Experiments

.

HL-LHC $\sqrt{s} = 13$ TeV, $L = 3 ab^{-1}$

Drell-Yan processes + Fusion TBD

Kickoff Meeting | 2024

- Fusion TBD

- DM is produced in association with a high p_T^γ
- Recast the ATLAS analysis
- Work with LO Parton level for signal simulation

Projections for high-lumi LHC

- Assume only statistical uncertainties and same selections of ATLAS analysis
- 95% CL bound with $\frac{N_S}{\sqrt{N}}$ rescaling the expected SM events by lumi ratio

6

Validity of the EFT

 $\mathscr{L}_{\phi}^{strong} = \tilde{C}_{B}^{\phi} \phi^2 B_{\mu\nu} B^{\mu\nu} + \tilde{C}_{W}^{\phi} \phi^2 W_{\mu\nu} W^{\mu\nu}$

we require that $p_T^{\gamma} < \Lambda$

lections of ATLAS analysis I events by lumi ratio

- DM is produced in association with a high p_T^{γ}
- Recast the ATLAS analysis
- Work with LO Parton level for signal simulation

6

Validity of the EFT

 $\mathscr{L}_{\phi}^{strong} = \tilde{C}_{B}^{\phi} \phi^2 B_{\mu\nu} B^{\mu\nu} + \tilde{C}_{W}^{\phi} \phi^2 W_{\mu\nu} W^{\mu\nu}$

we require that $p_T^{\gamma} < \Lambda$

2

FCC-hh: DY process - @ 80/100 TeV with $L = 30 ab^{-1}$

- Process assumed to be qualitatively the same as ATLAS mono- γ
- Hard photon \Rightarrow different analysis wrt the soft photon analysis already done
- The $pp \to Z\gamma, Z \to \nu\bar{\nu}$ channel is the dominant bkg
- $\Rightarrow \sim 60\%$ of the total yield $(bkg)_{\nu}^{ATLAS}/(bkg)_{tot}^{ATLAS}$
- LO simulation with MadGraph for ν channel in the fiducial regions given by ATLAS - We find that the LO $Z\gamma$ simulation accounts for $\sim 80\%$ of the experimental $Z\gamma$ ATLAS background and hence $\sim 50\%$ of the total experimental background \Rightarrow this is constant in all the ATLAS signal regions;
 - We estimate the total SM bkg multiplying by a factor 2 the dominant $Z\gamma$ bkg computed using MadGraph;
- Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

• Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

mono $-\gamma$ DY at FCC-hh $\sqrt{s}=80{ m TeV}$ ${\cal L}=$													
	EI												
$m_{\phi}[{ m GeV}]$	$p_{T,\mathrm{min}}^{\gamma}\left[\mathrm{GeV} ight]$	$\Lambda_{ m sc}[{ m GeV}]$	$\mid p_{T,\mathrm{min}}^{\gamma} \left[\mathrm{GeV} ight]$										
100	5500	7780	4000										
1000	6000	7350	4000										
2000	6500	6640	3500										
5000	8500	4490	200										
	I		I										
		_											

mono $-\gamma$ DY at FCC-hh	$\sqrt{s} = 100 \mathrm{TeV}$	$\mathcal{L} =$
-----------------------------	-------------------------------	-----------------

	No EFT	EF	
$m_{\phi}[{ m GeV}]$	$p_{T,\mathrm{min}}^{\gamma}\left[\mathrm{GeV} ight]$	$\Lambda_{ m sc}[{ m GeV}]$	$\mid p_{T,\mathrm{min}}^{\gamma} \left[\mathrm{GeV} ight]$
100	7000	9150	4500
1000	7500	8800	5000
2000	8000	8160	4500
7000	11000	4850	300
	1		'

	Process assu
	Hard photor
	The $pp \rightarrow Z$
=	$\Rightarrow ~ 60\%$ of
	LO simulatio
	- We find t
	backgrou
	\Rightarrow this is co
	- We estimation
	using Mac
•	Signal select

2

FCC

2+

FCC-hh: Forthcoming studies

VBF Analysis

- VBF is a relevant process \Rightarrow different kinematics
- We would like to perform a forward production analysis
- \Rightarrow No clean environment!

BEFORE FCC-hh

$\sqrt{s} = 91.2 \, \text{GeV}$ $L = 120 \, ab^{-1}$

Colliders

FCC-ee: DY process

- Z-pole to probe the scale $\Lambda \Rightarrow$ DM produced in association with an energetic photon
- Strongest sensitivity from on-shell Z
- The dominant bkg is $e^+e^- \rightarrow \gamma \nu \bar{\nu}$
- <u>Analysis selections</u>: we have taken $|\eta| < 2.5$
- We maximize the sensitivity N_S adding a cut on P_T^{γ} $\sqrt{N_B}$

3

5

Xenon and Darwin

 $\frac{d\sigma^{Ray}}{dE_R} = \frac{4m_T}{m_{\phi}^2 v^2} \frac{c_{\gamma\gamma}}{\Lambda^4} \frac{Z^4 \alpha_{em}^2}{\pi^2 b^2(A)} \mathcal{F}_{ray}^2$

PRD 131,041003 and arxiv:1606.07001

• ROI41: Most profile independent • DM annihilation (PPPC4MID Tool) Line($\phi \phi \rightarrow \gamma \gamma, \gamma Z$) + Continuum(ZZ, WW, γZ)

DD and ID

Conclusions

Near Future (FCCee, HL-LHC):

- Will place more stringent bounds on this dark matter scenario; \bullet
- FCCee gives one of the stringent bound, but only for small DM mass; \bullet
- HL-LHC will not be significantly greater than current LHC bounds.

Indirect and Direct Detection:

Current bounds (e.g., FERMI) and future projections (e.g., Darwin) will remain competitive, if not stronger, than FCCee or HL-LHC.

Next Future (FCChh):

- Will be able to probe much higher energy scales; \bullet
- Could provide crucial insights into this dark matter benchmark. \bullet
- Forthcoming studies for VBF!

THANK YOU

		٠	•	•	٠	•	•		•	•								
٥	0	٠	٠	•	٠	٠	٠	•	•	•				٠				
v		٠	•	٠	٠	•	•	•	•	•	•							
9	•	٠	٠	٠	٠	٠	•	•	•	•	٠							
٠		٠	•	٠	٠	•	•	•	•	•	•	•						
	٥	٠	٠	٠	٠	٠	•	•	•	•	•		•			٠	•	
				•	0	٠	٠	•	•	•	•	•	٠	٠				

									٠	٠	٠	٠	•	•	•	•	•	٠
				e		٠	٠	٠	•	٠	•	•						
			•		•	٠	•	٠	•	•	•	•	•					
	ŵ	0	0	٠	•	٠	٠	٠	•	•	•			•				
	0		٠	٠	•	٠	•	•	•	•	•	•						
	٠		•	٠	•	•	•	•	•	•	•	•						
	ę		٠		•	٠	•	٠	•	•	•	•	•					