Searches for γ-coupled ALPs & massive gravitons at FCC-hh

FCC-hh Studies for the next EU Strategy: kick-off meetg CERN, 3rd Sept 2024

HC

Patricia Rebello Teles (CBPF David d'Enterria (CERN)

Prelude.... LHC has proven a unique $\gamma\gamma$ collider

Electromagnetic ultra-peripheral colls. (UPCs): b_{min} > R_A+R_B, hadrons survive
 EM field = Weizsäcker-Williams (Equivalent Photon Approx.) photon flux:

• Huge photon fluxes:

 $\sigma(\gamma\gamma) \approx Z^4 \ (\approx 5 \cdot 10^7 \text{ for PbPb})$ times larger than p,e[±]

 Beam-energy dependence: Photon luminosities increase as ∞log³(√s)

Quasi-real γ (coherent emission): $Q \approx 1/R \approx 0.03$ GeV (Pb), 0.28 GeV (p)

Max.	(longitudinal) γ energies:	$\omega < \omega_{max} \approx \frac{1}{R} \approx 80 \text{ GeV}$	(Pb), 2.5 TeV (p)
------	---------------	---------------	--	-------------------

System	$\sqrt{s_{_{ m NN}}}$	\mathcal{L}_{int}	$E_{\text{beam1}} + E_{\text{beam2}}$	$\gamma_{ m L}$	$R_{ m A}$	E_{γ}^{\max}	$\sqrt{s_{\gamma\gamma}^{\max}}$
Pb-Pb	5.52 TeV	5 nb^{-1}	$2.76 + 2.76 \mathrm{TeV}$	2960	7.1 fm	80 GeV	160 GeV
p-Pb	8.8 TeV	1 pb^{-1}	7.0 + 2.76 TeV	7450, 2960	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV
p-p	14 TeV	$150\mathrm{fb}^{-1}$	7.0 + 7.0 TeV	7450	0.7 fm	2.45 TeV	4.5 TeV

Single X = C-even (spin 0,2) resonances only (Landau-Yang + C symmetry)

ALP searches via $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ in PbPb(5 TeV)

Search for $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ excess over LbL ($\gamma\gamma \rightarrow \gamma\gamma$) continuum in PbPb(5.02 TeV):

No excess: Most stringent ALPs limits of $g_{a\gamma} > 0.05$ TeV⁻¹ over $m_a = 5-10$ GeV

ALP searches via $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ in pp(13 TeV)

Search for $\gamma \gamma \rightarrow a \rightarrow \gamma \gamma$ excess over LbL $(\gamma \gamma \rightarrow \gamma \gamma)$ continuum in p-p (13 TeV):

• Analysis strategy:

 $m_{\gamma\gamma} > 350 \text{ GeV (p's in PPS accept.)}$ Aco_{γγ}<1% (γγ back-to-back) Matching m_{γγ} & y_{γγ} in PPS & ECAL

No excess over random pileup pp tags + pQCD $\gamma\gamma$ production: 0 (1) evt expected (observed)

Most stringent limits on ALPs $(g_{a\gamma} > 0.1-1 \text{ TeV}^{-1})$ over $m_a = 0.5-2 \text{ TeV}$:

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_a^2}{2} a^2 - \frac{g_{a\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu}$$

[CMS-EXO-21-007, arXiv:2311.02725]

Massive grav. searches via $\gamma\gamma \rightarrow G \rightarrow \gamma\gamma$ at the LHC

Search for excess over LbL $\gamma\gamma \rightarrow \gamma\gamma$ from spin-2 graviton-like particles:

Recast ALPs-GRAVs limits over $m_G \approx 5$ GeV–2 TeV w/ coupling $g_{G_V} \approx 0.05-1$ TeV⁻¹

FCC = unique photon-photon collider

Electromagnetic ultra-peripheral colls. (UPCs): b_{min} > R_A+R_B, hadrons survive
 EM field = Weizsäcker-Williams (Equivalent Photon Approx.) photon flux:

• Huge photon fluxes:

 $\sigma(\gamma\gamma) \approx Z^4 \ (\approx 5 \cdot 10^7 \text{ for PbPb})$ times larger than p,e[±]

 Beam-energy dependence: Photon luminosities increase as ∞log³(√s)

Quasi-real γ (coherent emission): $Q \approx 1/R \approx 0.03$ GeV (Pb), 0.28 GeV (p) Max. (longitudinal) γ energies: $\omega < \omega_{max} \approx \frac{\gamma}{R} \approx 0.6$ TeV (Pb), 15 TeV (p)

System	$\sqrt{s_{_{ m NN}}}$	\mathcal{L}_{int}	$E_{\text{beam1}} + E_{\text{beam2}}$	$\gamma_{ m L}$	R_{A}	E_{γ}^{\max}	$\sqrt{s_{\gamma\gamma}^{\max}}$
Pb-Pb	39.4 TeV	110 nb^{-1}	19.7 + 19.7 TeV	21 100	7.1 fm	600 GeV	1.2 TeV
p-Pb	62.8 TeV	29 pb^{-1}	50. + 19.7 TeV	53 300, 21 100	0.7,7.1 fm	15.2 TeV, 600 GeV	15.8 TeV
p-p	100 TeV	$3Qab^{-1}$	50. + 50. TeV	53 300	0.7 fm	15.2 TeV	30.5 TeV

Repeat LHC ALPs/GRAVs analyses with $\times 10$ higher \sqrt{s} & \mathcal{L}_{int} than LHC

MC generation & FCC-hh reconstruction

gamma-UPC+MG5@NLO to generate ALPs,Gs,LbL LHE samples for pp(100TeV), pPb(63TeV), PbPb(39TeV) UPCs over m_{a,G} = 5 GeV–30 TeV, g_{a,G} = 0.1 TeV⁻¹

FCC-hh meetg, CERN, Sept 2024

Expected ALPs limits at FCC-hh (preliminary)

- pp(100TeV): LHC limits at m_a = 0.1–1 TeV improved by 1–2 orders-of-magnitude, covers unexplored m_a = 2–30 TeV for ALPs with coupling down to g_{aγ} = 5·10⁻³ TeV⁻¹
- PbPb(39TeV) & pPb(63TeV): Bounds ~10 times beyond LHC, but not competitive wrt. FCC-ee(91 GeV): $Z \rightarrow a(\gamma\gamma)\gamma$, and pp(100 TeV) excl. $\gamma\gamma$ searches

FCC-hh meetg, CERN, Sept 2024

P. Rebello-Teles & D. d'Enterria

Expected GRAVs limits at FCC-hh (preliminary)

■ pp(100TeV): Improves LHC limits at $m_G = 0.1-1$ TeV by 1–2 orders-of-magnitude, covers unexplored $m_G = 2-30$ TeV for massive gravs with coupling $g_{aG} > 10^{-2}$ TeV⁻¹

PbPb(39TeV) & pPb(63TeV): Bounds beyond LHC for m_G = 5–100 GeV down to couplings g_{aG} = 5·10⁻² TeV⁻¹ (but FCC-ee, to be studied, more competitive there...)

FCC-hh meetg, CERN, Sept 2024

Back-up slides

Heavy-ion collisions at the FCC-hh

CM energy $\sqrt{s} = 100$ TeV for pp means: $\sqrt{s_{NN}} = \sqrt{s}\sqrt{Z_1Z_2/A_1A_2}$ for A-A colls. PbPb: $\sqrt{s_{NN}} = 39$ TeV, $L_{int} = 110$ nb⁻¹/month pPb: $\sqrt{s_{NN}} = 63$ TeV, $L_{int} = 29$ pb⁻¹/month Lint: ×10–30 larger than LHC

Huge increase in cross sections (yields)

Table 1:	Beam	and	machine	parameters.
----------	------	-----	---------	-------------

	Unit	Baseline		Ultimate	
Operation mode	-	Pb–Pb p–Pb		Pb–Pb	p–Pb
Number of Pb bunches	-	2760		5400	
Bunch spacing	[ns]	100		50	
Peak luminosity (1 experiment)	$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	80	13300	320	55500
Integrated luminosity (1 experiment, 30 days)	$[nb^{-1}]$	35	8000	110	29000