

RD50 HV-CMOS Meeting

RD50-MPW4 Allpix² Simulations

Bernhard Pilsl

CADEMY OF

Allpix²

- Monte Carlo Detector Simulation Framework
- Geant4 utilized to build detector geometry and deposit energy in detector due incoming particle beam
- Modular framework
 - Build geometry
 - Apply E-field (simple linear field approximation \rightarrow advanced fields from TCAD)
 - Deposit charge
 - Propagate charge (drift in E-field and diffusion)
 - Collect at surface / implant
 - Digitize
 - Interpret and output to ROOT files
- Talk by Simon Spannagel at DRD3 week: https://indico.cern.ch/event/1402825/contributions/5998273/

AUSTRIAN ACADEMY OF SCIENCES

Allpix² Usage

- We need 3 config files (key value pairs, pretty similar to Corryvreckan)
- 1) Detector model specifies material, thickness, pixel pitch, number of pixels,...
- 2) Place (several) detectors in world volume in geometry-file
- 3) Define simulation chain (module by module) in config file
- Allpix² executed via CLI with something like "allpix -c best-simulation-ever.conf"

З

AUSTRIAN ACADEMY OF SCIENCES

Allpix² Possibilities

Deposited charge (e- / hole pairs) per incident particle

Cluster size

Simulation Goals

- Do we understand our sensor properly?
 - Depletion
 - Threshold
 - ...

ADEMY OF

- Benchmark simulation with test-beam results
- Tune simulation parameters \rightarrow Improve characteristics of MPW4
 - Spatial resolution (charge sharing, cluster position calculation)
- Find crucial parameters as "design goals" for possible next iteration

Current Setup

-0.05

-0.1

-0.15

-0.02

- DESY beam
 - 4.2 GeV electrons in air
- Linear electric field
 - Depletion voltage = -200V
 - Bias voltage = -200V
 - Only in z-direction; No lateral component
- Charge collection full pixel surface
 - No deep N-Well implant
- Threshold: 3000e-
 - $V_{Thr} \sim 30 40 mV$
- No telescope only MPW4 in 2cm distance from particle source
 - Faster than using actual test-beam distance (less scattering in air needs to be simulated)

0

Hitmap (mpw4)

y (mm)

0.02

6000

4000

2000

Results Overview

- Average Cluster-size ~1.3 pixel / cluster
 - Testbeam result: 1.324 pixel / cluster
- Mean charge of 20.6 ke⁻ collected at pixels
 - First peak at ~3.5ke⁻ due to charge sharing
 - Cluster charge shows only 1 single peak

AUSTRIAN ACADEMY OF SCIENCES

Spatial resolution

- · Residuals show spatial resolution of
 - Total: 17.19um
 - 1 Pix cluster: 16.35um
 - 2 Pix cluster: 15.58um
 - Significant double peak
 - 3 Pix cluster: 21.8um
 - Significant double peak
- Double peak due to high threshold?
 - Shared charge not detected
- "Significant" differences to test-beam
 - We are using actual charge in e⁻ not ToT for center of gravity impact position

- Saturation of charge observed at V_{Bias} → depletion voltage (V_{Depl} simulated with 200V)
- Cluster-size decreases at V_{Bias} > V_{depl}
- Both in good agreement with testbeam results
- Simulation full efficient down to $V_{\text{Bias}} \sim 10V$
- Test-beam shows degradation "already" at $\,V_{\text{Bias}}\,$ $\sim 20V$
 - Linear approximation of E-field no longer valid
 - Test-beam results show strong corner effects

Threshold scan

Charge mostly unaffected

AUSTRIAN CADEMY OF

- Mean charge above threshold increases due to cut off of low charge signals
- Efficiency decreases only at ~10ke⁻
 - Test-beam shows decrease at \sim 5000e⁻
 - Again less severe corner effects in in-pixel-efficiency observed

10

Threshold scan – Residuals

- Double peak characteristic less
 pronounced at higher thresholds
 - Less charge sharing

Q _{thr} [e-]	Spatial resolution [µm]
100	16.06
2k	16.82
6k	17.39
12k	17.75

AUSTRIAN CADEMY OF

Introducing QDC \rightarrow ToT

- In MPW4 data we have no actual charge but ToT
- What effect does this have on the observables? Also "easy access" benchmark
- Easiest way to simulate in Allpix²: introduce a QDC (charge to digital converter)
 - Number of bits (in our case 8)
 - QDC slope as slope of linear relation between Charge \rightarrow ToT
- First peak at low QDC values again due to charge sharing

Get QDC slope right

How to get QDC slope right? •

AUSTRIAN CADEMY OF SCIENCES

- Lab evaluation inject into all pixels \rightarrow fit to linear function \rightarrow extract mean slope
 - Shows slope of $\sim 1530e^{-1}$ •
 - Ranging from 1000 2500e •
- Benchmark to test-beam results _
 - Show average ToT of ~8.5LSB at • Q_{Thr} ~ 3000e-

oixels

60000

ToT hPixelRawValues Entries 5605893 Mean 8.5 600 Std Dev 3.788 500 400 DESY 300 200 100 0 40 60 80 100 ToT [LSB]

pixel charge after QDC pixelcharge adc Entries Mean Std Dev

Injection Scan

446299

6.76

3.835

QDC results

- QDC slope of 2500e⁻ and cut first peak resembles ToT of test-beam result pretty good
- Residuals show only slightly worse spatial resolution compared to calculation with actual charge

AUSTRIAN ACADEMY OF SCIENCES

> Double peak more pronounced compared to simulation without QDC

pixel charge after QDC

Summary / Outlook

- Most results of test-beam (at least right ball park) were reproduced in simple simulations
- Residuals show unexpected "shape"
 - Cut pixels with low charge
 - Disable diffusion
 - Increase track position uncertainty at DUT
 - Collect charges not on sensor surface but with actual (Deep N-well) implant
 - Requires E-field with lateral components → TCAD
- First (low ToT) peak not observed in DESY results
 - Is our threshold larger than we think?