

Simulations and characterization of the first monolithic CMOS LGAD implemented in 110nm

2nd DRD3 week on Solid State Detectors R&D CERN, 05/12/2024

U. Follo, S. Durando, G. Gioachin, C. Ferrero, M. Mandurrino, L. Pancheri, M. Da Rocha Rolo, A. Rivetti, S. Bufalino

Table of contents0102Introduction of
CMOS LGADDesign of
MadPix

03 Characterization and simulation

Conclusion and outlook

 $\mathbf{04}$

FCT -

------ Conclusions -

Motivation

Main driver: ALICE 3 ToF layers

-Introduction—Design

Constraints:

- Time resolution ≈ 20 ps
- **Power consumption**
- Material budget
- Cost

Monolithic timing detectors are considered as an option

Other fields: 4D tracking, very low power pixel sensors (space), medical applications

Low Gain Avalanche Diodes (LGADs): workhorse for high resolution silicon timing detector.

From simulations: <20ps for thicknesses <15um

Starting point: ARCADIA monolithic sensors

Fully depleted MAPS in 110nm CMOS

-Introduction-Design-

Available thicknesses:

• 48um, 100um, 200um (full depletion demonstrate up to 400um)

Target **applications**:

- Medical Imaging (PCT)
- Space applications
- HEP experiments
- X-ray imaging

3 engineering runs:

- 1st mid 2021
- 2nd beginning 2022
- 3rd beginning 2023

Main demonstrator (MD):

- Sensor array of 512x512 pixels
- Pixel pitch: 25um
- Binary pixel with event-driven readout

Andrea Patternò, Vertex 2021 ARCADIA Main Demonstrator

Characterization

------ Conclusions -

X-ray image photon counting

Cosmic Rays

⁹⁰Sr source

ARCADIA MAPS: gain add-on option

- Add-on **p-gain** below the collecting electrode starting from 3rd run
- Lfoundry CMOS 110nm with 48um active thickness
- **ARCADIA** production:

passive structures and **monolithic structures**

Requires negative bias of the backside, positive bias at the sensor pad and **AC coupling** of readout electronics

Characterization ——Conclusions -

MadPix

Monolithic CMOS Avalanche Detector PIX elated Prototype

First prototype with integrated electronics and gain layer

Active thickness: 48 µm

- Backside HV: allow full depletion → -20 V to -40 V
- **Topside HV**: manage the gain \rightarrow 35 V to 65 V

-Introduction-Design-

- 8 matrices of 64 pixels each 3 64 x 2 analogue outputs

Pixels of 250 µm x 100 µm

4 flavours

Thanks to M. Tornago

MadPix Electronics

Characterization

- Cascoded common source + differential buffer (1.2V)
- FE AC coupled with sensor

-Introduction——Design-

Power: 0.18mW/ch

- Source follower (3.3V)
- ✤ AC coupled with FE
- Power: 1.65mW/ch

Conclusions.

MadPix Test Board

Controlled through FPGA (DACs, Digital potentiometers, Test pulse)

- 4 SMA driving 50Ω line (top 4 matrices)
 → Analogue read-out (Oscilloscope/Digitizer)
- 4 Discriminator (bottom 4 matrices)
 → Digital read-out (FPGA)

-Introduction——Design-

Only **four adjacent pixels** can be read simultaneously

- Board designed by Marco Mignone (INFN Torino) - Firmware written by Richard Weadon (INFN Torino)

Characterization —— Conclusions -

Chip Characterization

-Introduction-Design-

Characterization —— Conclusions -

- Passive structures under focused IR laser
- **Backside Illumination**
- Integrated charge in time We have **gain**...
 - ... but lower than expected

- Lateral CV
- P-gain **implantation energy** is -2.5x to recover mismatch (TCAD simulations)
- Gain target with nominal profile: 20-30

- Gain extraction using TCAD simulations with tuned pgain profiles (TCAD simulations)
- Gain simulated ≈ 3
- Good agreement between data and simulation

https://dx.doi.org/10.1088/1748-0221/19/07/P07033

- Conclusions ------

First test beam : Time resolution

-Introduction——Design-

Main contributor: Sensor

Jitter:

RMS of the time difference between laser trigger out (TTL) and analogue output of MadPix (@ 50% signal amplitude)

Solving the problem: Focused Ion Beam

Characterization

Conclusions

Floating guard ring to be shorted

-Introduction——Design

----- Conclusions -----

MadPix – Short loop

New production:

Increased gain

Short loop: same mask set with different implant dose -> optimization of sensor at low price New **sensor** production with **higher gain** arrived in September 2024 Expected **gain range: 5-20**

-Introduction——Design-

Conclusions

-Introduction——Design-

----- Conclusions ------

Back where we started from

First signals observed in a test

beam, passive structure with gain -50um thick - July 2023

-Introduction——Design-

Signals observed in last test beam, MadPix with gain - 50um thick - Oct 2024

Conclusions and Outlook

- > Prototype for timing application in 110nm technology design in the ARCADIA project → MadPix
- → Test beam characterization of devices with low gain ≈ 3
 - → Time resolution ≈ 130ps (Electronics + Sensor) but high substrate current
- → Performed Focused Ion Beam (FIB) on multiple samples
 - Substrate current: 2 orders of magnitude lower
- → Laboratory characterization of structure with **improved gain**
 - Gain of the sensor between 5 and 13
- → Total time resolution below 90ps (@ 0.18mW/ch)
 - Sensor time resolution **~ 75ps**

What's next?

- Position time correlation of MadPix test beam of March 2025 @ DESY
- Characterization of MadPix without gain
- \rightarrow Simulation activities to match test beam results
- \rightarrow Short loop with lower active thicknesses

Thank you for the attention!

Spare

----- Conclusions ------

Simulation matching

-Introduction-Design-

2° DRD3 week -- Umberto Follo

Laser setup

♀ Optical characterization at UNITN (Trento)

- ightarrow IR laser from the back of the sensor
- → laser pulse ~ 100 ps

T. Corradino

-Introduction——Design——Chip Characterization——Conclusions ——

INFN Torino, **INFN** Bologna,

iThemba LABS,

Madpix at the Test Beam

Y Test beam setup in collaboration with INFN Bologna

Passive structures characterization

I(V) scan to study the sensor behavior

New production: Increased gain

2° DRD3 week -- Umberto Follo