Development of MAPS using 55nm HVCMOS process for future tracking detectors

> Zhiyu Xiang (IHEP, CAS) On behalf of COFFEE team

2nd DRD3 week on Solid State Detectors R&D

6th Dec 2024

Motivation

- LHCb Upgrade2 requires tracker with finer granularity and better radiation-hardness
- Future Higgs factory, CEPC, plans to utilize large-area silicon-based tracker

 $\begin{array}{l} \mbox{Upstream Tracker@ LHCb U2 FTDR} \\ \mbox{area} \sim 8m^2 \\ \mbox{radiation hardness} \sim 3 \times 10^{15} n_{eq}/cm^2 \\ \mbox{timing} \sim \mbox{ns to tag 25 ns bunches} \end{array}$

CEPC Inner Tracker area $\sim 15m^2$ spatial resolution $< 10\mu m$ timing \sim ns to tag 23 ns bunches

HVCMOS as Possible Solution

Needs	Radiation hardness	Resolution	Timing	Power consumption
	$3 imes 10^{15} \mathrm{n_{eq}/cm^2}$	$10 \mu m$	3-5ns	200 mW/cm^2

HVCMOS characteristics:

- Front-end circuit inside the charge collection well
- Large depletion depth and electric field
- On average shorter drift path: faster charge collection, radiation hard

Choice of HVCMOS with 55nm Process

- The international mainstream technology is 180/150 nm process. HVCMOS pixel sensor will be applied to Mu3e experiment
- Motivation of chip R&D in 55nm process:
 - Smaller feature of process should provide stable support for mass production in next decades
 - Technological benefits: lower power, higher circuit density...

CMOS sensOr in Fifty-FivE nm procEss (COFFEE)

 \bullet COFFEE1 chip, $3\times 2 \mathrm{mm}^2$, verify the feasibility of 55nm process

LL process

• Sensor can responds to red laser, test with IDE1140 read-out chip

NIMA Volume 1069 P169905 (2024)

5/18

CMOS sensOr in Fifty-FivE nm procEss (COFFEE)

The first HVCMOS chip in 55nm process COFFEE2 chip (4 \times 3mm²), real validation of the sensor

NIMA Volume 1069 P169905 (2024)

CMOS sensOr in Fifty-FivE nm procEss (COFFEE)

COFFEE2 chip contains 3 sectors

- Sector1: passive diode arrays with pixels of size 34 \times 68 μm^2 for study on sensing diode and charge sharing
- Sector2: 32 rows×20 columns pixel matrix, various diodes and in-pixel amplifier or discriminator designs for process validation
- Sector3: 26×26 pixel matrix of $21 \times 21 \mu m^2$ pixels with digital readout periphery for novel electronics structure study (Hui Zhang's poster at TWEPP 2024)

Typical IV Test

- Breakdown voltage \sim 70V, leakage \sim 10pA. Consistent with TCAD simulation with $10\Omega\cdot cm$ resistivity substrate
- Breakdown voltage can be further improved with high resistivity substrate

Typical CV Test

- $\bullet\,$ At 70V, the capacitance of single pixel due to depletion $\sim 50 {\rm fF}$
- Not fully depleted. The capacitance also takes into account parasitic effect (i.e. metal electrode/routing wire)

Glance at Irradiation Effect

- Proton beam @80MeV of CSNS
- \bullet Irradiation up to $1.6\times 10^{14}~{\rm n_{eq}/cm^2}$ at room temperature
- Leakage current increased to 1nA after irradiation

Test of Passive Sensors: Schematic

Sensor signal is delivered to the preamplifier via AC coupling. An external charge sensitive preamplifier (link) used in test.

• Gain: $1 \mathrm{mV/fC}$; Decay time constant: $140 \mu s$; ENC RMS: 200 e

Test of Passive Sensors: Signal

- Clear response to both laser ($\lambda \sim 650 \mathrm{nm}$) and α radioactive source
 - 54 pixels read out at a time, via external charge sensitive amplifier

Active Pixel Matrix

- 32 rows×20 columns active pixel matrix
- 3 variations of in-pixel electronics
 - CSA only
 - CSA + CMOS discriminator
 - CSA + NMOS discriminator
- Peripheral modules including analogue buffer, DACs and row/column switch

Active Pixel Matrix Test System

PC + ZC706 + Caribou board + dedicated chip board

Caribou system architecture

Control and Readout (CaR) board

Feature	Description		
Adjustable Power Supplies	8 units, 0.8 - 3.6 V, 3 A		
Adjustable Voltage References	32 units, 0 – 4 V		
Adjustable Current References	8 units, 0 – 1 mA		
Voltage Inputs to Slow ADC	8 channels, 50 kSPS, 12-bit, 0 - 4 V		
Analog Inputs to Fast ADC	16 channels, 65 MSPS, 14-bit, 0 - 1 V		
Programmable Injection Pulsers	4 units		
Full-Duplex High-Speed GTx Links	8 links, <12 Gbps		
LVDS Links	17 bidirectional links		
Input/Output Links	10 output links, 14 input links, 0.8 - 3.6 V		
Programmable Clock Generator	Included		
External TLU Clock Reference	Included		
External High-Voltage (HV) Input	Included		
FEAST Module Compatibility	Supported		
FMC Interface to FPGA	Included		
SEARAY Interface to Detector Chip	320-pin connector		

Resources for various target applications

20 CaR boards v1.4 produced and distributed within RD50 common project

14 / 18

Active Pixel Test Preliminary Results

• CSA performance studied with charge injection

• Response curve consistent with simulation

Zhiyu Xiang

Active Pixel Test Preliminary Results

• Discriminator works, cross talk seen between CMOS discriminator and amplifier, can be mitigate by future design and offline analysis

• The PMOS potential flip will cross talk to amplifier

Active Pixel Test Results (preliminary)

• Clear signal response to red laser (left), β source (middle) and X-ray source (right)

• For 55 Fe, signal amplitude consistent with expectation

Summary & Future

• First HVCMOS chip in 55nm process for future tracker

- Test results show encouraging diode properties
- Promising results with laser and radioactive source (α, β , X-ray)
- Further test is ongoing
- More R&D ongoing for HVCMOS chip
 - Full functional COFFEE3 is currently being designed
 - Seeking for more MPW opportunities with high resistivity substrate

Welcome to join!