

CEPC vertex Detector

Zhijun Liang (On behalf of the CEPC physics and detector group)

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design including electronics, cooling and mechanics
- Readout electronics & BEC
- Performance from simulation
- Research team and working plan
- Summary

Introduction: vertex detector

Vertex detector optimized for first 10 year of operation

- Higgs factory , low luminosity Z factory
 Motivation:
 - Aim to optimize impact parameter resolution and vertexing capability
 - Key detector for H \rightarrow cc and H \rightarrow gg physics, which is an important goal for CEPC

Vertex Requirement

- Inner most layer (b-layer) need to be positioned as close to beam pipe as possible

- Challenges: b-layer radius (11mm) is smaller compared with ALICE ITS3 (18mm)
- High data rate: (especially at Z pole , ~43MHz, 1Gbps per chip)
 - Challenges: 1Gbps per chip high data rate especially at Z pole
- Low material budget (less than 0.15%X0 per layer)
- Detector Cooling with air cooling (power consumption<=40 mW/cm²)
- Spatial Resolution (3-5 um)
- Radiation level (~1Mrad per year in average)

CEPC vertex detector prototype R & D

R&D efforts: Full-size TaichuPix3

Full size CMOS chip developed, 1st engineering run

- 1024×512 Pixel array, Chip Size: 15.9×25.7mm
- 25µm×25µm pixel size with high spatial resolution
- Process: Towerjazz 180nm CIS process
- Fast digital readout to cope with ZH and Z runs (support 40MHz clock)

TaichuPix-3 chip vs. coin

An example of wafer test result

	Status	CEPC Final goal
CMOS chip technology	Full-size chip with TJ 180nm CIS	65nm CIS

R&D effort: vertex detector prototype

	Status	CEPC Final goal
Detector integration	Detector prototype with ladder design	Detector with bent silicon design

R&D efforts and results: Jadepix3/TaichuPix3 beam test @ DESY

 Collaboration with CNRS and IFAE in Jadepix/TaichuPix R & D

R&D efforts and results: vertex detector prototype beam test

9

Technology survey and our choices

Vertex detector Technology selection

- Baseline: based on curved CMOS MAPS (Inspired by ALICE ITS3 design[1])
 - Advantage: 2~3 times smaller material budget compared to alternative (ladder)
- Alternative: Ladder design based on CMOS MAPS

[1] ALICE ITS3 TDR: https://cds.cern.ch/record/2890181

R&D efforts curved MAPS

- CEPC b-layer radius (11mm) smaller compared with ALICE ITS3 (radius=18mm)
- Feasibility : Mechanical prototype with dummy wafer can curved to a radius of 12mm
 - The dummy wafer has been thinned to $40 \mu m$

	Status	CEPC Final goal
Bent silicon with radius	Bent Dummy wafer radius ~12mm	Bent final wafer with radius ~11mm

Baseline: bent MAPS

- 4 single layer of bent MAPS + 1 double layer ladder
 - Material budget is much lower than alternative option
- Use single bent MAPS for Inner layer (~0.15m²)
 - Low material budget 0.06%X0 per layer
 - Different rotation angle in each layer to reduce dead area

Long barrel layout (no endcap disk)

layer	Radius	Material
Layer 1	11mm	0.06% X0
Layer 2	16.5mm	0.06% X0
Layer 3	22mm	0.06% X0
Layer 4	27.5mm	0.06% X0
Layer 5/6 (Ladders)	35-40 mm	0.33% X0
Total		0.57% X0

to cover $\cos \theta <= 0.991$

Alternative : CMOS ladder

Alternative: CMOS chips with a long ladder layout

- 3 double-side layer with long ladders design
- We have built a vertex prototype based on the short ladders design
- No effective solution for inner layer cooling yet.

Data rate estimation of vertex detector

	Hit rate (MHz/cm ²)	Data rate@triggerless (Gbps/cm²)
Higgs	0.61	0.18
ww	3.16	0.98
Low lumi Z pole	3.9	1.2

- Data rate is dominated by background from pair production
- WW runs and low Lumi Z runs (20% of high lumi Z)
- Data rate @1.2Gbps per chip for triggerless readout

Chip design for ref- TDR and power consumption

Power consumption

- Fast priority digital readout for 40MHz at Z pole
- 65/55nm CIS technology
- Power consumption can reduced to ~40mW/cm²
- Air cooling feasibility study
 - Baseline layout can be cooled down to ~20 °C
 - Based on 3 m/s air speed, estimated by thermal simulation

	_	25.7 mm
Э	Ť	Pixel Matrix: 25.6 mm × 12.8 mm
	15.9 mm	
		A(0.03, 2.30)
		B(0.03, 1.05)
		Periphery Readout : 25.6 mm × 1.1 mm
	_	DACs: 1.5 mm × 0.5 mm DataTrans: 1.3 mm × 0.6 mm
	0(0	D, 0) D(0.43, 0.57) C(13.52, 0.40)

	Matrix	Periphery	DataTrans.	DACs	Total Power	Power density
65nm for TDR @ 1 Gbps/chip (TDR LowLumi Z)	60 mW	80 mW	36 mW	10 mW	186 mW	~40 mW/cm ²

Performance: impact parameter resolution

Compared to alternative (ladder) option

- baseline (stitching) has significant improvement (~45%) in low momentum case

Contributions and Collaborations

- IHEP Beijing: Chip designs, electronics, DAQ and prototype assembly
- IPHC/CNRS: Collaboration in framework of FCPPL, BELLE II upgrade
- IFAE: Collaboration in Taichu chip design
- ShanDong U.: Stitching chip design, Taichu chip design
- CCNU: Jadpix chip design
- Northwestern Polytechnical U. : Taichu Chip design
- Nanchang U. : Taichu chip design
- Nanjing U. : testbeam study

Summary

- ¹st full-size Prototype based the ladder design for CEPC vertex detector has been developed
- The Curved MAPS option has been chosen as baseline for the reference detector TDR.
 - More R & D needed for this option
 - Preparing a work package proposal towards research for vertex detector in future lepton collider
 - Exploring synergies with other projects

CEPC vertex conceptional design (2016)

CEPC vertex prototype (2023)

Preliminary idea about working package

Aim to develop vertex detector for future lepton collider

- 3-5um spatial resolution
- 40-43.3MHz clock, Can handle 1Gbps data rate in single chip level
- Power consumption ~40mW/cm²
- Stitching design, can be used in for curved MAPS vertex detector

	Deliverables	Goal
2025	TJ180nm CIS stitching engineering run	Verify the stitching technology for high data rate
2026	TJ65nm CIS MPW chip (joint MPW runs ?)	Validate the basic design for 65nm technology
2027-2028	TJ65nm CIS engineering run	Validate final design

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Silicon Pixel Chips for Vertex Detector

JadePix-3 Pixel size ~16×23 μ m²

Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm²

MOST 1

Goal: $\sigma(IP) \sim 5 \mu m$ for high P track

CDR design specifications

- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 5 series: JadePix, TaichuPix, CPV, Arcadia, COFFEE

TaichuPix-3, FS 2.5x1.5 cm² 25×25 μm² pixel size

CPV4 (SOI-3D), 64×64 array ~21×17 μm² pixel size

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

MOST 2

TaichuPix design

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic
- Column-drain readout for pixel matrix
 - Priority based data-driven readout
 - Readout time: 50-100 ns for each pixel
- 2-level FIFO architecture
 - L1 FIFO: de-randomize the injecting charge
 - L2 FIFO: match the in/out data rate
 - between core and interface
- Trigger-less & Trigger mode compatible
 - Trigger-less: 3.84 Gbps data interface
 - Trigger: data coincidence by time stamp only matched event will be readout
- Features standalone operation
 - On-chip bias generation, LDO, slow control, etc

R&D efforts and results: R & D for curved MAPS

Stitching chip design (by ShanDong U.)

- 350nm CIS technology Xfabs
- Wafer level size after stitching ~11 × 11 cm²
- reticle size ~2 ×2 cm²
- 2D stitching
- Engineering run, chip under testing

Stitching chip : 11×11 cm²

Key technology Status		CEPC Final goal	
Stitching	11*11cm stitched chip with Xfab 350nm CIS	65nm CIS stitched sensor	

R&D status and final goal

Key technology	Status	CEPC Final goal
CMOS chip technology	Full-size chip with TJ 180nm CIS	65nm CIS
Detector integration	Detector prototype with ladder design	Detector with bent silicon design
Spatial resolution	4.9 μm	3-5 μm
Detector cooling	Air cooling with 1% channels (24 chips) on	Air cooling with full power
Bent CMOS silicon	Bent Dummy wafer radius ~12mm	Bent final wafer with radius ~11mm
Stitching	11×11cm stitched chip with Xfab 350nm CIS	65nm CIS stitched sensor

R&D efforts: Air cooling in vertex prototype

Dedicated air cooling channel designed in prototype.

- Measured Power Dissipation of Taichu chip: ~60 mW/cm² (17.5 MHz in testbeam)
- Before (after) turning on the cooling, chip temperature 41 °C (25 °C)
 - In good agreement to our cooling simulation
 - No visible vibration effect in spatial resolution when turning on the fan

Key technology	Status	CEPC Final goal
Detector cooling	Air cooling with 1% channels (24 chips) on	Air cooling with full power

Vertex technologies: Cables and services

Limited space in the MDI region for cables and services

- Utilizes DC-DC powering; MAPS silicon substrate requires a common negative bias
- Signal are transmitted through a flexible PCB and then converted to optical fiber.

Backup : air cooling simulation

Vertex Requirement

- 1st priority: Small inner radius, close to beam pipe (11mm)
- 2nd priority: Low material budget <0.15% X0 per layer</p>
- ^{3rd} priority: High resolution pixel sensor: 3~5 μm

R&D efforts : Curved MAPS testbeam

2×10⁻ 10⁻ 2×10⁻

Before bending

R & D of curved maps with MIMOSA28 chip

- No visible difference in noise level or spatial resolution before/after bending

Long barrel : cluster size vs incident angle

Cluster size = $a \times sec\theta + b$

TaichuPix3 vertex detector prototype

adder support tools

New pickup tools

Ladder on wire bonding machine

Dummy ladder glue automatic dispensing using gantry

The first vertex detector (prototype) ever built in China

Ladder Electronics

- Baseline: stitching and RDL metal layer on wafer to replace PCB
- Alternative: flexible PCB
 - Signal, clock, control, power, ground will be handled by control board through flexible PCB

Baseline: ALICE ITS3 like stitching

[1] ALICE ITS3 TDR: https://cds.cern.ch/record/2890181

Alternative: flexible PCB

