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Signal formation in LGAD detectors

 Initial lonization process and Landau distribution in PiN diodes
(bare with me in this step, it is interesting)

« Space charge effects during e/h drift

« Gain quenching in LGAD

« Temporal resolution in LGADs

« Landau distribution in LGADs

* A novel method to measure LGAD gains

N. Cartiglia
Laboratory Innovative Silicon Sensors
Torino
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Landau distribution in PIN diodes

. In each event, the impinging particle creates

clusters of charges along its path.

. These localized energy deposits follow some

unknown “elemental distribution X".

. The sum of the energy deposits is the total

energy deposition.

. The total energy deposition follows a Landau

distribution

Question: which distribution X is such that
the sum of random numlbers from this
distribution is a Landau?

y [um]

0 50 100 150 200 250 300

n
Landau (MPV,FWHM) = Dist (Z random(X)i>
i=1

n = number of draws
Suppose: n = thickness in micron



The cenftral limit theorem does not apply
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Stable distributions

For a special class of functions, stable distributions, the sums of random

variables result in a distribution of the same type.
The Landau distribution is a stable distributions, therefore:

the sum of random numbers from a Landavu distribution is also distributed

as a Landavu distribution.

Properties of the Landau(MPV, FWHM) distribution obtained by drawing n random
numbers from a Landau, (MPV,,, FWHM,)

MPV = MPV,, « In(n)

FWHM = FWHM |,

The MPV increases proportionally to In(n) How does this compare

The FWHM remains constant with the measured resulis?



The measured Landau distribution in PIN diodes

Meroli S., Passeri D., Servoli. L. (2011). Energy loss measurement for charged particles in very thin
silicon layers. JOURNAL OF INSTRUMENTATION, vol. 6 / 2011

The MPV scales logarithmically:

8 1 ' @ 5.6 um |
= * 224 um
MPV = 0.027 = In(thickness) + 0.126) w08 56 um |
©
06 112 um |
This is consistent with the elemental =
. : ) Ep4!
distribution X to be a Landau 504
Z
0.2+
The FWHM decreases with thickness: o .
0 0.2 04 0.6 0.8 1
0.31 Energy Loss [KeV/um]
FWHM = — . . .
t hlc kne S 50-19 Average energy loss per micron of a ionizing particle in silicon layers of different thicknesses.

This is not consistent with the elemental distribution X to be a Landau.

==> Convolutfion of a Landau with a Gaussian of mean = 0.

The correct choice of the elemental distribution X
is the convolution of a Landavu with a Gaussian
(approx. of the Vavilov distribution)

N. Cartiglia, INFN Torino



Starting point

In the WF2, the energy deposition in a sensor of arbitrary thickness is therefore obtained as a sum of
deposits chosen randomly from an elemental distribution, the convolution of a Landau & Gaussian.

The program correctly reproduces the measured MPV and the FWHM dependence on the sensor

thickness.
E
=
g Local deposition follows
-C:) a Landau®Gaussian The total deposition
'Z distribution follows a
E Landau distribution
ko]
o)
g WF2 program: X [um]
: https://www to.infn.it/~cartigli/Weightfield2/index.html
Z
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LGAD Temporal resolution vs sensor thickness

, . Temporal resolution vs thickness
Let's compare the measured temporal resolution

70
of sensors of various thicknesses with the WF2
o 60 «-WF2 Simulation
predictions
_. 50 | * Measured (Jitter subtracted)
151
E K
Problem: the predicted temporal resolution is 8 40 r . l
= T L ]
° E - » -
much worse than the measured resolution. g % L] |
20 | ° |
This discrepancy increases with thickness. 10 -
0
0 10 20 30 40 50 60 70 80
. . . Thickness [um
The root of the problem: eventsin the high tail of the , _ tuml ,
This plot reports the resolution due to non-uniform charge
Landau distribution degrades the resolution. deposition; jitter is subtracted.

The correct simulation of the initial Landau distribution leads to the

wrong prediction of the temporal resolution

Data from: "Beam test results of 25 um and 35 um thick UFSD", F. Carnesecchi, S. Strazzi et al, Eur. Phys. J. Plus (2023) 138:99
"Optimization of the gain layer design of Ultra-Fast Silicon Detectors", F. Siviero et al, NIMA 1033 (2022) 166739

90


https://www.to.infn.it/~cartigli/ufsd_project/ewExternalFiles/2208.05717.pdf

INFN Torino

N. Cartiglia,

Landau distribution and temporal resolution

The temporal resolution is degraded if one energy The events in the Landau tail spoil the temporal resolution.
deposit is much larger than the average. g 1 . 3'264'"'" -
= * 224 ym
w08 56 um
206 =112 um |
Thick sensors have worse temporal resolution - 0.4l
O
because it is more likely that at least one energy “02|
deposit is much larger. 0 02 0.4 06 08 1
Enerav Loss [KeV/um]
WF2 Simulated energy deposits
15-micron thick sensor 80-micron thick sensor
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What are we missing in the simulatione

« Space charge effects
« Gain saturation
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y [um]

[::]

Space charge effects

During the e/h drift, the charge density decreases due to space charge effects

WF2 simulation of a charge cloud drifting

toward the electrode

e Charge Distribution e Charge Distribution
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Charge density decreases during drift, equalizing

the current

(connected with the talk “Finding sharks..” M. Moll)
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Temporal resolution vs thickness
» WF2 Simulation
+WF2 Simulation with Space Charge

@ Measured (Jitter subtracted)

10 20 30 40 50 60 70 80 90
Thickness [um]

With Space charge repulsion, the temporal resolution

in WF2 is slightly closer to the measured resolution

10
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Gain guenching

The LGAD gain is not constant, it is smaller for large charge clusters

The charge carriers in the gain layer produce a field

that is opposite to the LGAD field, lowering the gain.

Nn++ electrode

s, oD es
Carriers
LGAD
Efield
Efield
++++4+++

p+ gain implant

Due to gain quench, the gainis lower for large charge
depositions
Gain quenching acts as a dumper, equalizing the

current

Resolution [ps]

70 ¢

20

10 r

Temporal resolution vs thickness
»WF2 Simulation
+ WF2 Simulation with Space Charge and Gain Quench

® Measured (Jitter subtracted)

‘.’

10 20 30 40 50 60 70 80
Thickness [um]

With Space charge repulsion and gain quench, the
temporal resolution in WF2 is very similar to the

measured resolution

11
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LGAD signal formation: pictorial rappresentation

LGAD signal formation needs to include these three mechanisms:

An initial non-uniform energy deposition obtained as sum of elemental deposits

Space Charge effects during the particle drift.

Gain Quench during mulfiplication.

Nn++ electrode

N
o+ gorn implant

q

0

‘ Electrons drift

Initial energy deposition

Nn++ electrode

Nn++ electrode

f
D+ gain/implant

N
p+ gain[mplant

I Holes drift

Space Charge effects

Gain Quenching

12
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Effect of gain quench on the LGAD Landau distribution

Since the gain is lower for large charge deposits, the gain mechanism distorts the

initial Landavu distribution, decreasing the Landau high tail.

HPK2 beta measurement
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Measured LGAD Landau distribution as a function of gain

Landau

Gain quenching transforms the initial Landavu distribution into a Gaussian distribution
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LGAD Temporal resolution vs Landau position

What is the temporal resolution as a function of the event position in the Landau?

Landau distribution Temporal resolution in Landau bins for a 50-micron thick sensor

450 : : % r
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U. Data from: Ongoing study, C. Marinuzzi et al
Z "Optimization of the gain layer design of Ultra-Fast Silicon Detectors", F. Siviero et al, NIMA 1033 (2022) 166739
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Can we use gain guenching to our advantagee

Gain layers with deeper implant work at lower
values of the electric field and the change of

the mean free path with Efield is higher.

Therefore, the field generated by the e/h has @

more significant impact on Lambda.

Can we exploit this aspect to design LGADs
that perform better?

Nn++ electrode

Lower
LGAD
Efield

Carriers
Efield

v

+++++++

p+ gain implant

dlambda/dE [um/kV]

DeriNative of A vs Efield

Nn++ electrode

Higher Carriers
LGAD l Efield

Efield +++++++

p+ gain implant

——Massey + LGAD @ 250K

!

PR

1.5E+05

2.0E+05 2.5E+05

EField [kv/cm]
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Temporal resolution vs gain implant position

(signals with amplitude > 2*MPV in 80-micron thick sensors)

WF2 80-micron thick sensors.
50 -~ Resolution vs gain implant position

45-
40 F N

35_ |
30 f .

25 t

Resolution [ps]

20 ¢
15
0T gain ~ 16
5

[ Jitter = 0 in this study
u L 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Gain implant depth [micron]

Unfortunately
WF2 predicts that, in our regime of operation, the gain
implant depth does not affect the LGAD temporal resolution

N. Cartiglia, INFN Torino

17



N. Cartiglia, INFN Torino

Landau method to measure gain

Can we use the distortion of the LGAD Landau to measure the LGAD gain?

Entries

# events > MPV DESY beam test
A > 0.45
I > 040 |
. Z 035 Lt S
[ i
I # events > 1.5 MPV é.% 0.30 |
1 - = 0.25 | .
| 1 5 020 L + 80 micron,
| - * i i
I i 50 micron
} P Z o i
1 R £ 010 ----80 micron PiN
Signal [mV] E 0.05 F 50 micron PiN
*  0.00
0 5 10 15 20 25

Gain
Consider a quantity that is sensitive to the magnitude of the Landau tail, for example
(# of events >1.5*MPV)/(# of events >MPV)
Up to gain ~ 7-10, the ratio remains similar to that of the PiIN Landau
At higher gain, there is a linear dependence from the gain

Self calibrating, no need to know anything about the electronics (it just needs to be linear) 18
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Drift Potentlal | Weighting Potential | Currents and Oscilloscope | Electronics || Electronics 11 |

WF2 control panel
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— Drawi
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If you use WF2, be aware of these two options
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Detector Properties
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[11) Implant a1 0.5 - 1.0 micron -
[Massey - WF2 LGAD model -
Gain implant peak doping [10%16/cmA3) 58
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r =
Ti:Noise, Vih|mV.CFD i<t s i 0.
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Summary

Seemingly uncorrelated effects find an explanation in the shared underlying
process of gain quench and space charge repulsion.

The following experimental quantities have been considered and correctly
simulated in this study:

The initial energy deposition by a MIP

- The MPV and FWHM dependence upon sensor thickness
The reduction of the Landau tail as a function of the LGAD gain
The LGAD temporal resolution as a function of sensor thickness
The temporal resolution in bins of the Landau distribution



Extra
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WF2 Gain guench simulation

Gain quench increases:

When the gain increases

«  When the number of incoming electrons increases

Suppression factor
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Suppression vs measured gain
Gain implant depth: 0.5 - 1 micron

Nn++ electrode
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Entries
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a0

LGAD Temporal resolution vs Landau position

Landau distribution

g

1
|
|
|
1
|
|
|
1
|
|
|
1
1
4

[
300 400 500 600 Foo
Signal (mV)

Events in the tail have a worse time
resolution ( as expected)

Data from: Ongoing study, C. Marinuzzi et al
"Optimization of the gain layer design of Ultra-Fast Silicon Detectors", F. Siviero et al, NIMA 1033 (2022) 166739
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WEF2 prediction: LGAD Temporal resolution vs Landau position

Landav distribution

n 450 I T I | 1
The events in the tail of the distribution contains very large é wof- | | |
. - i g 1 1 1
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90 - :
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5 50| e
2 a0 | Rl distribution is more severe.
== - I
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#events (>1.5*MPV)/(> MPV)
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Additional data on quenching

Landau tail quenching as a function of gain

0.45
040 bRt
n = 50 micron, TB FAST3
0.35 50 micron PiN
0.30 | :"'“'.'.,1 ﬁ:. . + 50 micronTB, UFSD3-SC
. . R o * Shallow Beta, SC
0.25 | — . . » ShallowTB, SC
.
. . Deep Beta, SC

0.20 . .
0.15
0.10 ' ! L . . ' ! L )

0 5 10 15 20 25 30 35 40 45

Gain
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LGAD Temporal resolution vs sensor thickness

Let’'s compare the measured temporal resolution with the WF2 predictions, including:

+ Space charge
« Gain guench

In the simulation,

« Gain quench, making the signal smoother,
has a very strong effect on the temporal
resolution.

« Space charge effects improve slightly the
temporal resolution with respect of the initial
deposition

« Space charge effects, when added to gain

qguench, degrade slightly the resolution.

N. Cartiglia, INFN Torino

Resolution [ps]

predictions much closer to the measured values.

70 r

Temporal resolution vs thickness

= WF2 Simulation

« WF2 Simulation with Space Charge
~»--WF2 Simulation with Gain Quench Gain
+ WF2 Simulation with Space Charge and Gain Quench
Quench
& Measured (Jitter subtracted)
*
l .
o !
I ' -
? 4
' o o Tmars L
b
10 20 30 40 50 &0 70 80 a0

Thickness [um]

Including Gain Quench (and Space Charge effects to a lesser extent) in the simulation brings the

26



Signal formation in LGAD detectors

This contribution examines several PIN Diodes & LGAD properties and searches for
the shared underlying physical processes at their roof.

Observables:
« The shape of the Landau distribution in PiN diodes
« The MPV and FWHM dependence upon the sensor thickness
« The shape of the Landau distribution in LGAD as a function of gain
« The temporal resolution of LGADs as a function of the sensor thickness
« The temporal resolution in bins of the Landau distribution

The Weightfield2 program has been used to validate/confute various hypotheses.

WF2 program:
https://www.to.infn.it/~cartigli/Weightfield2/index.htm|

N. Cartiglia, INFN Torino
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WF2: LGAD Landau distribution as a function of gain

WF2 simulation for an 80-micron thick sensors
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Effect of gain quench on the LGAD Landau distribution

At low gain, the LGAD Landau distribution is compatible with the

300
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100
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parametrization of the Landau for PIN diodes

Landau
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Measured LGAD Landau distribution as a function of gain

50-micron thick sensors, CERN beam test
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“Beam test results of a 16 ps timing system based on ultra-fast silicon detectors”,
N. Cartiglia et al, NIMA 850 (2017) 83 - 88

N. Cartiglia,
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Temporal resolution vs gain

Consider the temporal resolution for signals with amplitude > 2*MPV in 80-micron thick sensors.
(these events are very irregular, so they are a good testing ground)

WF2 80-micron thick sensors.

As the gain increases, " Resolution vs gain
quenching smooths the 70 - 2
L ]
signal shape more and E 60 |
more, and the resolution s S0 - .
improves. | l
A 30 +
<
E 20 '
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31



N. Cartiglia, INFN Torino

Properties of the Landau - |l

The next step is to connect Landau’'s mathematical properties and the measured results.

In the following, the number of random numbers n and the sensor thickness play the

same role, n = sensor thickness in micron

This will allow us to determine the elemental distribution to build any measured Landav.



LGAD Landau distribution as a function of gain

Comparison Data - WF2 simulation

Simulation without Gain Quench
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« With Gain Quench, WF2 reproduces well the evolution of the ratio Sigma/MPV.
«  Without gain quench, Sigma/MPV is roughly constant, not matching the data.

N. Cartiglia, INFN Torino
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y [um]

Starting point of the WF2 simulation

The correct choice of the elemental distribution X
is the convolution of a Landau with a Gaussian
==> This distribution is a good approximation
of the Vavilov distribution, which is known to
reproduce the energy deposits in thin sensors.

Local deposition follows The total deposition
a Landau®Gaussian follows a

distribution Landau distribution

x [um]

In the WF2, the energy deposition in a sensor
of arbitrary thickness is therefore obtained as
a sum of deposits chosen randomly from an
elemental distribution, the convolution of a
Landau @ Gaussian.

The program correctly reproduces the
measured MPV and the FWHM dependence

on the sensor thickness.

In the following slides, the consequences of
this step will be examined
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What read-out architecture is a better for LGADs?

These two plots compare the temporal resolution due to non-uniform ionization for a Trans-
Impedance (Tl) or Charge Sensitive Amplifier (CSA) for two different sensor thicknesses (30-
micron and 80-micron).

» Forsignals around the MPV (regular shape), the resolution is the same

* In thin sensors (that have relatively uniform signals), the resolution is the same

« In the tail of thick sensors (irregular signals), the Tl architecture is much better

WF2 simulation Temporal resolution in Landau bins for a 30-micron thick sensor WF2 simulation Tempaoral resolution in Landau bins for a 80-micron thick sensor
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Resolution [ps]

Resolution [ps]
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LGAD Read-out architecture
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