

Planar SiC Diodes for Material and Radiation Hardness Studies

DRD3 WG6 Project Proposal

Sebastian Onder (HEPHY) on behalf of Thomas Bergauer and others

DRD3 Workshop, 5.12.2024

Silicon Carbide for Particle Detectors

- Wide bandgap material
 - Bandgap between silicon and diamond
 - Low leakage current (pA)
- Features high...

AUSTRIAN CADEMY OF

- − Breakdown field & saturation velocity \rightarrow faster signals \rightarrow timing
- Displacement energy \rightarrow potentially less radiation induced defects
- Ionization energy \rightarrow particles deposit less charge
- Insensitive to visible light
- Polytype 4H commonly used
- Received much attention in industrial sector → better accessibility

HEPHY INSTITUTE OF HIGH ENERGY PHYSICS

AUSTRIAN ACADEMY OF

- Radiation Damage in SiC: Open Challenges
- Open challenges in radiation damage modelling for SiC:
 - Trap information deviate in literature
 - Existing models are based on small sample sizes and specific fluences
 - Integration of a dedicated model in TCAD
- Demand for large-scale irradiation study:
 - Statistically significant sample size
 - Large spectrum of fluences $10^{13} n_{eq}/cm^2 10^{18} n_{eq}/cm^2$
- However: not enough sensor samples available
- Proposal:
 - Irradiation study with commercially available SiC-Schottky diodes on the short term
 - Planar Schottky and pn-junction diodes of own design on the mid- to long-term
 - Collaborating institutes with DRD3 share lab resources and samples coordinatively
- Note: project focus on material study not on design of specific devices

Plan/Deliverables: Measurements

- Selection of appropriate samples:
 - Multiple device models, e.g. differing substrate doping, IV/CV characteristics
 - If possible, different manufacturers
 - Many identical samples per combination
- Irradiation campaign
 - Fluences of $10^{13} n_{eq}/cm^2 10^{18} n_{eq}/cm^2$
 - Irradiation with different particles (neutron, proton, electron, γ)
 - ≥ 10 devices per fluence and particle
- Pre/post irradiation measurements
 - IV, CV, CCE, DLTS, MCTS, . . .
 - unchanged measurement setups
 - with(out) thermal annealing

AUSTRIAN ACADEMY OF SCIENCES

Plan/Deliverables: Simulation

- Need TCAD design of used devices
- For commercial diodes: TCAD reverse engineering i.e. reconstruction of IV, CV and CCE characteristics
- Additional information available through:
 - SEM, TEM and SIMS measurements for device structuring
 - SPICE models
 - Details or TCAD models maybe offered by manufacturer
- Radiation damage model fitting based on measurements from irradiated samples:
 - traps
 - type (donor/acceptor)
 - ionization energy
 - introduction rate
 - electron/hole capture cross sections

- HEPHY Vienna: irradiation, characterization, test beam @ Medaustron, TCAD
- INFN Perugia: TCAD, characterization
- INFN Torino: characterization
- **INFIM Romania**: defect investigations, FTIR and Hall measurements
- FBK: production of Schottky and pn-junction 4H-SiC diodes
- We are open for anyone who is interested and wants to participate in any kinds of measurements, simulations or wants to contribute samples to the study!
- A project proposal document on CDS has not yet been set up

Commercial SiC Schottky Diodes

- Increasing availability due to demand in power electronics (BV of up to 3kV, I_f up to 40A)
- Can be obtained online & off the shelf in large numbers
- Cheap: a few cents per diode

ADEMY OF

- Come with validated characteristics, datasheets and SPICE models
- Expected depletion region thickness of $3-7\mu m$

 \rightarrow challenge for MIP detection

- \rightarrow laser and alpha particle measurements preferred for radiation sensing
- Have metal contact on top → metallization needs to be removed for laser tests

Image from: https://questsemi.com/products/copy-of-copy-of-qs-hcs-6510-650v-10a

Types of SiC Schottky Diodes

• Schottky Barrier Diode (SBD)

AUSTRIAN CADEMY OF

- Junction Barrier Schottky (JBS) Diode
 - p-implants with Schottky contact to metal
 - Reduction of leakage current in reverse bias
- Merged PIN Schottky (MPS) Diode
 - P-implants with ohmic contact to metal
 - Reduction of leakage current in reverse bias
 - PN-junction dominates forward current at high forward voltages → better thermal stability
- MPS diodes offer best performance for power applications
 - \rightarrow mostly MPS diodes available online
 - \rightarrow TCAD modelling becomes more complex

Availability of Bare Dies

- For radiation sensing: need for bare dies
- Several vendors offer bare dies: Central Semiconductor, WolfSpeed, SemiQ, QuestSemi...
- First contact approaches for samples only answered by one company (in progress)
- Workaround 1: open packaged diodes
 - Opening packages is tedious for many samples
 - Destruction-free opening still an open question
- Workaround 2: commercial production run
 - Advantages:

ADEMY O

- Custom structure \rightarrow easier reverse engineering of TCAD models
- Diodes tailored for radiation sensing \rightarrow thick epi-layer, simple architecture, metallization opening for laser tests
- Disadvantages: possibly higher costs and lead times

First Efforts with Packaged Diodes

- Packaged Infineon MPS diodes
- Packaged diode opening:
 - Heat package at 650°C for 20-30s
 - Mecanically remove package and filling
 - Yield ~70% at the moment
 - Diodes become slightly more leaky
- Particle detection with alphas planned next

First Simulation Efforts for JBS Diode

 \times ³

n

- From SiC Schottky template in Sentaurus TCAD:
 - Oxide and edge termination removed
 - p⁺-implants added

AUSTRIAN ACADEMY OF SCIENCES

- Electric field lowered at metalsemiconductor interface
- Reduced leakage current

- Proposal for large-scale irradiation study
 - Large sample size: several identical devices per fluence, particle and device model (100s-1000s in total)
 - Coordinated across several interested institutes in the DRD3 collaboration
 - Project complementary to SiC LGAD development
- Commercial SiC Schottky diodes as short-term solution:
 - Easily accessible in large numbers
 - Thin epi-layers (3-7µm)
 - Getting bare dies not quite as easy as initially thought
- Initial efforts:
 - Opened packaged diodes almost ready for particle detection with alphas
 - TCAD simulations of JBS and MPS diodes ongoing

AUSTRIAN ACADEMY OF SCIENCES

Thank you

AUSTRIAN ACADEMY OF SCIENCES

Back Up

Opened Diode IV

- Reverse-IV of opened Infineon diodes
 - 3x 4A, 650V aka 465C5
 - 1x 2A, 1200V aka 212C5
- 465C5_1 is leaky

AUSTRIAN ACADEMY OF SCIENCES

• Use 465C5_2 and 212C5 for particle detection

• Large parameter space:

AUSTRIAN

- Work function energy (depends on metallization)
- Substrate doping (higher doping = higher tunneling current)
- Schottky barrier tunneling parameters
- Diode architecture (SBD, JBS, MPS)
- Recombination, impact ionization, ...
- Starting point: SiC Schottky diode template in Sentaurus TCAD [1]
 - Schottky contact with 5.1eV work function energy
 - Area Factor: 2e5 -> device area of 1mm²
 - Non-local barrier tunneling model (NLM)

Sentaurus SiC Schottky Template

- Forward IV:
 - V_{on} ≈ 1.4 V
 - Forward current in the same ballpark as commercially available diodes
- Reverse IV:
 - breakdown starts at ~900V
 - Commercial devices have breakdown at 650V up to ~3000V (1200V most popular)

