Prototype of SiC-LGAD Detector

Xin Shi

On behalf of Participating Institutions

5 December 2024

2nd DRD3 week on Solid State Detectors R&D

Work Package Description

- Pixelated SiC LGAD device with timing and position capabilities has potential to address the 4D tracking in extreme conditions of future collider experiment
- Fabricate DC and AC LGAD SiC device with pixelated structures
- Characterize spatial and temporal resolution before and after irradiation up to 1e17 n_{eq}/cm^2
- Investigate SiC-LGAD properties after high fluence irradiation with correlation of the detector performance

Participating Institutions

Country	Collaborating Institution Collaborating Institution		Contact	
China	IHEP Beijing	IHEP	Xin Shi	
Austria	OEAW-HEPHY	HEPHY	Thomas Bergauer	
China	Jilin University	JLU	Weimin Song	
China	Shandong Institute of Advanced Technology	Shandong Institute of Advanced Technology		
China	Dalian University of Technology	DLUT	Hongwei Liang	
China	Ludong University	LDU	Zheng Li	
China	IMECAS	IME	Manwen Liu	
Slovenia	Jožef Stefan Institute	JSI	Gregor Kramberger	
UK	University of Oxford	Oxford	Daniela Bortoletto	
Switzerland	CERN	CERN	Michael Moll / Susanne Kuehn	
Netherlands	Nikhef	Nikhef	Kazu Akiba	
Israel	Weizmann Institute of Science	WIS	Noam Tal Hod	

Country	Collaborating Institution	Institution Code	Contact
Romania	NIMP Bucharest	NIMP	Ioana Pintilie
Czech	Czech Technical University FNSPE	FNSPE	Peter Svihra
Czech	Institute of Physics of the Czech Academy of Sciences	FZU	Marcela Mikestikova
Spain	IMB-CNM	CNM	Giulio Pellegrini
Spain	IFCA	IFCA	Ivan Vila Alvarez
Spain	CNA Serville	CNA	Maria del Carmen Jimenez Ramos
UK	The University of Manchester	Manchester	Alexander Oh
Italy	INFN Torino	Torino	Valentina Sola
Italy	INFN Perugia	Perugia	Francesco Moscatelli
Italy	FBK	FBK	Giovanni Paternoster
Greece	NTU Athens	NTUA	Ioannis Kopsalis
Italy	INFN Firenze	Firenze	Mara Bruzzi
Israel	Tel Aviv University	TAU	Arie Ruzin

insitutions from 12 countries

Deliverables and Key questions

Number	Title	Description	Start date	End date	Institutions
Di.1	Fabrication of PIN Device	Fabrication of SiC-PIN device Fabrication of the SiC-AC-PIN device	11/2024	5/2025	IHEP, CNM, FNSPE
Di.2	Fabrication of LGAD Device	Fabrication of SiC-DC-LGAD device Fabrication of SiC-AC-LGAD Avalanche gain to 10-50	6/2025	12/2025	IHEP, CNM, FNSPE, Nikhef

- How to effectively improve charge collection efficiency and time resolution?
 - Thickness and doping concentration of epitaxial active region and gain layer
 - Advantages and disadvantages of epitaxial growth and ion implantation of the gain layer
 - Effect of etched terminal and JTE terminal on device performance
 - Effective formation of P-type Ohmic contact
- Influence of the size and pitch of strip and pixel devices on device performance (AC/DC)

Deliverables and Key questions

Number	Title	Description	Start date	End date	Institutions
Di.3	Electronics Readout	Development of the readout board and ASICs	6/2025	12/2025	Manchester, NTUA

- Readout Electronics tuned for SiC device
 - Improve signal-to-noise ratio
 - Impedance match
- Single-channel DC/AC readout board
- Multi-channel DC/AC readout board
- Radiation hardness
- ASICs and FPGA dev with other projects ...

Deliverables & Key questions

Number	Title	Description	Start date	End date	Institutions
Di.4	Characterization	Characterization of IV, CV, Charge collection, time resolution test and spatial resolution test	1/2026	12/2026	IHEP, HEPHY, DLUT, IAT, JLU, LDU, IME, CNM, CERN, Oxford, WIS, Nikhef, IFCA, CNA, Torino, Perugia, FBK, NTU, Firenze, TAU, FNSPE, FZU
Di.5	Irradiation	Irradiate SiC-LGAD devices above 1×10 ¹⁷ n _{eq} /cm ²	1/2027	6/2027	JSI, HEPHY, FZU, NTUA, CNA

Irradiation type

- Neutron irradiation
- Proton irradiation
- Heavy ion irradiation
- Gamma ray

Deliverables and Key questions

Number	Title	Description	Start date	End date	Institutions
Di.6	Study of Irradiation Defects	Analysis of device defects caused by different types of irradiation	1/2027	6/2027	IHEP, HEPHY, CERN, NTU, NIMP, Firenze, TAU, FZU

- Defects characterization
- Effects of different types on 4H-SiC LGAD
- Understanding of temperature dependence, annealing on irradiation defects
- Can gain be used to compensate for the decrease in CCE caused by irradiation
- NIEL/TID

- Effective SiC simulation software and models
 - Improve the SiC physical property model
 - Improve SiC irradiation defect model

4H-SiC LGAD (SICAR) progress at IHEP

Refers to Sen Zhao's talk

SICAR1

- Gain layer doping concentration $\sim 1e17cm^{-3}$, $\sim 1 \ \mu m$ thick
- Active region doping concentration ~1e14 cm $^{-3}$ thickness ~50 μm
- The full depletion depth reaches ~ 29 μm
- Ohmic contact Ni/Ti/Al (50/15/80nm, Annealing Temperature 1050°C)

SICAR1 epitaxial structure

SICAR2 (In progress)

- Optimization of the concentration and thickness of the gain layer to enhance the Gain factor
- Gain layer with doping concentration 4e17cm⁻³ ~ 5e17cm⁻³
- thickness of 0.5 µm to enhance the gain~20

SICAR2 epitaxial structure

P++ 0.3 µm ~1e20cm⁻³		
N++ gain 0.5µm ∼1e17 cm ⁻³		
N- active region 50µm ∼ 1e14 cm ⁻³		
N-buffer 2µm		
Substrate		

Device progress at FNSPE

- The substrate wafer is 6" n-type
 - 4H-SiC with doping conc. $\approx 10^{19}$ cm⁻³
 - N-type epitaxial layer is in the range of 30-100 μm and down to $\approx 5\times10^{13}~cm^{-3}$
 - Thick epi and low doping below 10¹⁴ cm⁻³ are very challenging to achieve
- Wafer splits on diodes with and without LGAD layer for evaluation of gain over simple PN diode
 - P+ and LGAD layers were evaluated using DOE splits of implant energy/dose
 - P+: chain implant with energies 30-200 keV, doses 1-8 ×10¹⁴ cm⁻²
 - LGAD: single implant 950-1250 keV, 1.5-1.8 ×10¹³ cm⁻²

Epi tool parameter	Description
Chamber type	Horizontal
Silicon precursor	Trichlorsilane
Carbon precursor	Ethen
Dopant	Nitrogen compound*
Heating	Induction
Process temperature	~1630 °C
Process pressure	sub-atmospheric

* Proprietary information

Example of simulated profiles of active structure in LGAD diode

Existing LGADs on SiC

• Diode 3 x 3 mm^2 used for R&D

ONSEM¹

Characterisation at FZU and FNSPE

- Stable results of produced diodes (IV and CV curves across 20 devices per type)
- Waiting to measure devices after irradiation
- Planning beta source setup for timing

Summary and Plan

- SiC-LGAD Detector as potential candidate for future 4D tracking
- Orgnize regular WP meetings (every other three weeks)
- Will arrange the first sample distribution

Welcome to join us!

drd3-wg6-sic-lgad@cern.ch

Path towards Publication – a proposal

- Two lines with the WP in DRD3
 - Research Goal defined by the scientifc proposal, common for DRD3 members
 - Funding Agencies (PIs) publication as corresponding authors + ackonoledgement the Grant number (requested by some countries)
 - Students need to graduate as first author appeared in the publication (requested by some countries)
- To create collaborateive environment while keeping individual motivated
 - 1. Express your interest of publication with in the WP meeting (in WG6 case, the SiC session rotated every three weeks)
 - 2. Present at least one talk during the DRD3 meeting by the first author
 - 3. Draft the paper and submit to CDS within the WP/WG6 e-group to collect comment and suggestion at least one week
 - 4. Get approval by WG6 conveinors and propage to DRD3 publication committee
 - 5. Approved by DRD3 and submit to journal