Huazhen Li 1

Characterisation of **Diamond** and **SiC** sensors with **TPA** and modelling of response

Alexander Oh¹, Marco Gersabeck³, Oscar Augusto De Aguiar Francisco¹, Patrick Parkinson¹, Olivier Allegre², Patrick Salter⁴, Charles Smith¹, Nawal Al-Amairi¹

2nd DRD3 Week, WG6: WBG Sensors, CERN, Geneva, 5 Dec, 2024

1 Department of Physics and Astronomy, The University of Manchester Department of Mechanical, Aerospace & Civil Engineering, The University of Manchester Institute of Physics, Albert-Ludwigs-University of Freiburg Department of Engineering Science, University of Oxford

Diamond detector

- High radiation hardness
- High thermal conductivity
- High carrier mobility
- Cost?

- No cooling needed
- **Faster signal** \Rightarrow
- Material cost ↑ Processing cost ↓

2

➡ Future HEP experiments

Detector R&D procedures

3

Detector simulation workflow

4

The University of Manchester

*Work in progress, see Enoch's 1st DRD3 week talk : <https://indi.to/8jWMZ>

E.g. 3D Diamond sensor simulation

- Incident particle type: **MIP**
- Structure simulated:

5

• Quantities compared:

 t_{HM} : Half-max time

Q: Collected charge

• **Conclusion**

Uniformity: **T4 > P4**

(Integration from 0 to 10ns)

TPA effect in semiconductors

6

• Electrons simultaneously absorb **2** photons when transitioning.

• **T**wo **P**hoton **A**bsorption (TPA):

• Charge generation only happens in a small region near focal point (**"voxel")**

High spatial/temporal resolution

TPA effect in semiconductors

7

$$
\frac{\beta_2}{2\hbar\omega}\int_{-\infty}^{+\infty}I^2(r,z,t)\mathrm{d}t=\frac{E_p^2\beta_24\ln 2}{\tau\hbar\omega\pi^{\frac{5}{2}}w^4(z)\sqrt{\ln 4}}\exp\left[-\frac{4r^2}{w^2(z)}\right]
$$

TPA induced charge density: $n_{TPA}(z, r) = \frac{PZ}{2\hbar\omega} \int_{-\infty}^{+\infty} I^2(r, z, t) dt =$

Total collected charge: $Q \propto E_p^2$ – TPA Characteristic

 $Q_{\text{TPA}}(NA, Z_{\text{max}}, n, E_p)$

If reflection considered, need to add D and R . (see Appendix.)

Manchester TPA setup (PSI, UoM)

8

- PHARUS Yb:YAG56 pump laser with OPA.
- **100 kHz** pulse rate.
- λ : 300 ~ 16000 nm tunable.
- SPA monitor calibrated with powermeter **Thorlabs PM100USB.**
- Pulse energy: $0 \sim$ several μ .
- **ND filters** used to control energy.

- 4H-SiC sensor from **Solution Fig. 4**
- 3 $mm*3mm*50 \mu m$ epitaxy
- 4 Contact pads in the corners on top surface
- **TPA wavelength: 720 nm**

……

• Quadratic $Q - E_p$ relationship shown in both diamond and 4H-SiC samples; → TPA valid

-
- 4H-SiC: $Q(fC) = 250E_p^2$
	-

TPA energy scan

10

-
- Quadratic fitting results: \int Diamond: $Q(fC) = 328E_p^2 + 65E_p$

Si factor: 35400

The University of Manchester

• Amplifier: **CIVIDEC Cx-L.** Pulse energy obtained by SPA monitor (calibrated by power meter)

• **On XY plane:**

11

TPA voltage-depth-XY scan (4H-SiC)

- At each point on XY plane, bias voltage changes from **0V ~ 200V** (reversed bias);
- For each bias voltage, laser focus moves from **Z** $= -40 \ \mu m - 40 \ \mu m$.
- At each Z , measure the collected charge Q .

• **Center point (X=0, Y=0) Voltage-depth scan:**

12

TPA voltage-depth-XY scan (4H-SiC)

Effective numerical aperture (taking voxel aberration into account)

TPA voltage-depth-XY scan (4H-SiC)

• For different bias voltages, fitted Z_{max} vs XY:

TPA voltage-depth-XY scan (4H-SiC)

• **Fitted** Z_{max} vs V_{bias} :

The University of Manchester

• Depletion width obtained from C-V measurement from $\frac{1}{2}$ HEPHY :

 $Z_{\text{max}}(V_{\text{bias}}) = \varepsilon_r \varepsilon_0 A/C(V_{\text{bias}})$

• TPA measurements are in keeping with C-V measurements. Small deviation between TPA and C-V measurements observed.

• **Using TCT amplifier: CIVIDEC C2-TCT**

TPA current waveform (4H-SiC)

- Different positions used for TPA-TCT test
- **Long tails observed, and signals at different positions vary a lot.**
- **Can be explained by resistance of p implant**

• **Time resolution measurement using 2-pulse method not possible for this sensor**

TPA simulation

16

- Change uniform charge generation (MIP) to manually controlled charge density.
- Parameters need to be obtained from **TPA experiments!**

Conclusions

17

- **TPA characterisation performed on Diamond sensor & 4H-SiC sensor from HEPHY. Energy scan results indicate valid TPA charge generation in both sensors;**
- **Voltage-depth-X-Y scan performed on the 4H-SiC sensor. The depletion width vs. XY & bias voltage relationship is measured, which is in keeping with C-V measurements;**
- **On going:**
	- **A. Optimisation of TPA simulation using Sentaurus TCAD + Garfield**
	- **B. Preparing more 3D diamond samples for TPA**
	- **C. Optimisation of reconstruction to improve detector's time/space resolution**

Future steps

18

• **New 3D diamond sensors ready for assembly:**

• **Twisted structure sample waiting for metallisation, will be ready soon.**

Thank you for your Attention!

19

• **Reflection model**

 $+$

$$
n_{\text{TPA}}(z,r) = \frac{\beta_2}{2\hbar\omega} \int_{-\infty}^{\infty} dt I^2(z,r,t) = \frac{\beta_2}{2\hbar\omega} \int_{-\infty}^{\infty} dt \left[I_D(z-H,r) e^{-\frac{4\ln 2t^2}{\tau^2}} + R I_D(-z-H,r) e^{-\frac{4\ln 2(t+4t)^2}{\tau^2}} \right]^2
$$

$$
+\frac{\beta_2 R \tau}{2 \hbar \omega} \sqrt{\frac{\pi}{2 \ln 2}} I_D(z+H,r) I_D(z-H,r) e^{-\frac{2 \ln 2 (\Delta t)^2}{\tau^2}}
$$

$$
n^I = 2R \sqrt{n^D (z-H,r) n^D (z+H,r)} e^{-\frac{2 \ln 2 (\Delta t)^2}{\tau^2}}
$$

The University of Manchester

$$
= \left[\frac{\beta_2 \tau}{4\hbar \omega} \sqrt{\frac{\pi}{2\ln 2}} I_D^2(z - H, r)\right]
$$

 $n^D(z-H,r)$ n

$$
\frac{\beta_2 R^2 \tau}{4\hbar \omega} \sqrt{\frac{\pi}{2\ln 2}} I_D^2(z+H,r)
$$

 $R = R^2 n^D (z + H, r)$

• **Reflection model: fitting (CNM Silicon sensor)**

21

• **TPA simulation: Diamond waveform using fitting parameters from CNM silicon diode depth scan**

The University of Manchester

• **TPA depth scan: planar device**

22

• **TPA wavelength range**

The University of Manchester

*See Enoch's 1st DRD3 week talk :<https://indi.to/8jWMZ>

23

• **Deviation observed between TCAD and Garfield++ MC simulation**

