Characterisation of **Diamond** and **SiC** sensors with **TPA** and modelling of response

Alexander Oh¹, Marco Gersabeck³, Oscar Augusto De Aguiar Francisco¹, Patrick Parkinson¹, Olivier Allegre², Patrick Salter⁴, Charles Smith¹, Nawal Al-Amairi¹

1 Department of Physics and Astronomy, The University of Manchester 2 Department of Mechanical, Aerospace & Civil Engineering, The University of Manchester 3 Institute of Physics, Albert-Ludwigs-University of Freiburg 4 Department of Engineering Science, University of Oxford

2nd DRD3 Week, WG6: WBG Sensors, CERN, Geneva, 5 Dec, 2024

The University of Manchester

Huazhen Li¹

Diamond detector

- High radiation hardness
- High thermal conductivity
- High carrier mobility
- Cost?

- No cooling needed
- Faster signal
- Material cost Processing cost

2

Future HEP experiments

Detector R&D procedures

The University of Manchester

TPA Characterisation

Detector simulation workflow

The University of Manchester

*Work in progress, see Enoch's 1st DRD3 week talk : https://indi.to/8jWMZ

E.g. 3D Diamond sensor simulation

- Incident particle type: MIP
- Structure simulated:

- Quantities compared:
 - t_{HM} : Half-max time
 - **Q**: Collected charge

(Integration from 0 to 10ns)

Conclusion

Uniformity: T4 > P4

TPA effect in semiconductors

• **Two Photon Absorption (TPA):**

Electrons simultaneously absorb **2** photons when transitioning.

Charge generation only happens in a small region near focal point ("voxel")

→ High spatial/temporal resolution

TPA effect in semiconductors

TPA induced charge density: $n_{\text{TPA}}(z,r) = \frac{1}{2}$

Total collected charge: $Q \propto E_p^2 \longrightarrow TPA$ Characteristic

 $Q_{\text{TPA}}(NA, Z_{\text{max}}, n, E_p)$

If reflection considered, need to add *D* and *R*. (see Appendix.)

$$\frac{\beta_2}{2\hbar\omega}\int_{-\infty}^{+\infty}I^2(r,z,t)\mathrm{d}t = \frac{E_p^2\beta_2 4\ln 2}{\tau\hbar\omega\pi^{\frac{5}{2}}w^4(z)\sqrt{\ln 4}}\exp\left[-\frac{4r^2}{w^2(z)}\right]$$

Manchester TPA setup (PSI, UoM)

- PHARUS Yb:YAG56 pump laser \bullet with OPA.
- 100 kHz pulse rate.
- λ : 300 ~ 16000 nm tunable.
- SPA monitor calibrated with power- \bullet meter Thorlabs PM100USB.
- Pulse energy: 0 ~ several μ .
- **ND filters** used to control energy. \bullet

The University of Manchester

9

• 4H-SiC sensor from **HEPHY**

- 3mm*3mm*50µm epitaxy
 - 4 Contact pads in the corners on top surface
- TPA wavelength: 720 nm

TPA energy scan

- Quadratic fitting results:

4H-SiC: $Q(fC) = 250E_p^2$

Si factor:

Amplifier: **CIVIDEC Cx-L.** Pulse energy obtained by SPA monitor (calibrated by power meter)

Quadratic $Q - E_p$ relationship shown in both diamond and 4H-SiC samples; \rightarrow TPA valid

- / Diamond: $Q(fC) = 328E_p^2 + 65E_p$
 - - 35400

On XY plane:

- At each point on XY plane, bias voltage changes from **0V** ~ **200V** (reversed bias);
- For each bias voltage, laser focus moves from **= -40** μm ~ **40** μm.
- At each Z, measure the collected charge Q.

11

Ζ

Center point (X=0, Y=0) Voltage-depth scan:

Effective numerical aperture (taking voxel aberration into account)

• For different bias voltages, fitted Z_{max} vs XY:

• Fitted Z_{\max} vs V_{bias} :

The University of Manchester

 Depletion width obtained from C-V measurement from HEPHY :

 $Z_{\max}(V_{\text{bias}}) = \varepsilon_r \varepsilon_0 A / C(V_{\text{bias}})$

• TPA measurements are in keeping with C-V measurements. Small deviation between TPA and C-V measurements observed.

er

TPA current waveform (4H-SiC)

Using TCT amplifier: CIVIDEC C2-TCT \bullet

- Different positions used for TPA-TCT test
- Long tails observed, and signals at different positions vary a lot.
- **Can be explained by resistance of p implant**

 Time resolution measurement using 2-pulse method not possible for this sensor

TPA simulation

- Change uniform charge generation (MIP) to manually controlled charge density.
- Parameters need to be obtained from **TPA experiments!**

Conclusions

- TPA characterisation performed on Diamond sensor & 4H-SiC sensor from HEPHY. Energy scan results indicate valid TPA charge generation in both sensors;
- Voltage-depth-X-Y scan performed on the 4H-SiC sensor. The depletion width vs. XY & bias voltage relationship is measured, which is in keeping with C-V measurements;
- On going:
 - A. Optimisation of TPA simulation using Sentaurus **TCAD + Garfield**
 - **B.** Preparing more 3D diamond samples for TPA
 - **C.** Optimisation of reconstruction to improve detector's time/space resolution

Future steps

New 3D diamond sensors ready for assembly: \bullet

• Twisted structure sample waiting for metallisation, will be ready soon.

Thank you for your Attention!

Reflection model \bullet

+

$$n_{\rm TPA}(z,r) = \frac{\beta_2}{2\hbar\omega} \int_{-\infty}^{\infty} dt I^2(z,r,t) = \frac{\beta_2}{2\hbar\omega} \int_{-\infty}^{\infty} dt \left[I_D(z-H,r)e^{-\frac{4\ln 2t^2}{\tau^2}} + RI_D(-z-H,r)e^{-\frac{4\ln 2(t+\Delta t)^2}{\tau^2}} \right]^2$$

$$= \frac{\beta_2 \tau}{4\hbar\omega} \sqrt{\frac{\pi}{2\ln 2}} I_D^2(z - H, r)$$

 $n^D(z-H,r)$

$$+ \frac{\frac{\beta_2 R \tau}{2 \hbar \omega} \sqrt{\frac{\pi}{2 \ln 2}} I_D(z+H,r) I_D(z-H,r) e^{-\frac{2 \ln 2 (\Delta t)^2}{\tau^2}}}{n^I = 2 R \sqrt{n^D (z-H,r) n^D (z+H,r)} e^{-\frac{2 \ln 2 (\Delta t)^2}{\tau^2}}}$$

The University of Manchester

$$\frac{\beta_2 R^2 \tau}{4\hbar\omega} \sqrt{\frac{\pi}{2\ln 2}} I_D^2(z+H,r)$$

 $n^R = R^2 n^D (z + H, r)$

• Reflection model: fitting (CNM Silicon sensor)

• TPA simulation: Diamond waveform using fitting parameters from CNM silicon diode depth scan

21

• TPA depth scan: planar device

• TPA wavelength range

*See Enoch's 1st DRD3 week talk : <u>https://indi.to/8jWMZ</u>

Deviation observed between TCAD and Garfield++ MC simulation \bullet

