

Update on the RD50-SiC-LGAD Common Project

Andreas Gsponer

andreas.gsponer@oeaw.ac.at

on behalf of the HEPHY Detector Development Group

2nd DRD3 Workshop 05.12.2024

AUSTRIAN

1. RD50-SiC-LGAD : Design and Guarding

2. SiC-LGAD Radiation Hardness

3. Timing with 4H-SiC

Silicon Carbide LGADs

Wide Bandgap :

AUSTRIAN

CADEMY OF

- → no cooling / pA currents even after irradiation, insensitive to visible light
- High V_{BD}, high v_{sat} :
 → high voltages, fast signals → timing
- High displacement threshold: However, CCE rapidly decreases after 1E15 n_{eq}/cm²
- High ε_i, low thickness → small signal
 → SiC-LGADs

RD50-SiC-LGAD Project

- Started in 2023
- Aims at producing planar devices and prototype SiC-LGADs
- Irradiation studies for PIN and LGAD

Title of project:	SiC-LGAD
Contact person:	Thomas Bergauer (HEPHY Vienna)
	Nikolsdorfer Gasse 18, 1050 Wien, Vienna, Austria
	Thomas.Bergauer@oeaw.ac.at
RD50 Institutes:	1. OEAW-HEPHY, Thomas Bergauer, <u>Thomas.Bergauer@oeaw.ac.at</u>
	2. CSIC-IMB-CNM, Giulio Pellegrini, giulio.pellegrini@csic.es
	3. CERN, Susanne Kühn, <u>susanne.kuehn@cern.ch</u>
	4. INFN Perugia, Francesco Moscatelli, <u>moscatelli@iom.cnr.it</u>
	5. IFCA Santander, Ivan Vila <u>ivan.vila@csic.es</u>
	6. NIKHEF, Kazu Akiba <u>kazu.akiba@nikhef.nl</u>

Request to RD50: $30 \in$ Total project cost: $110k \in$

Activity	Instituto			_	Y	'ea	r 1		-			۱	/ea	r 2						Yea	r 3			
Acuvity	Institute		Q1		Q2		Q	3	Q	4	Q1	Q2		Q3		Q4	.	Q1	Q2	2	Q	3	C	<u>ک</u> لا
TCAD simulations	HEPHY, CNM	Pla	anar						LGA	\D r	un1			LGAD	rur	า2								
Wafer layout	HEPHY, CNM									1	\frown													
Production	CNM																							
IV, CV characterization	HEPHY, CNM, Perugia, NIKHEF																							
UV-TCT Measurements	HEPHY, CNM										Y													
TPA-TCT Measurements	Santander																							
Alibava	CERN																						\square	
Neutron Irradiations	HEPHY																							
X-Ray irradiations	Perugia																							

Planar Run Update

- RD-50-SiC-LGAD project encompasses a planar production
- Goal : Characterize 4H-SiC and validate simulations for planar devices
- 5 wafers in total, split into two runs
- First run : Issues with metalization (see DRD3 Talk)
- Second run: Due to finish early 2025

Wafer from first planar production and metalization issues

Wafer #

AUSTRIAN

SiC-LGAD Guarding

- Epitaxial gain layer needs to be interrupted / guarded
- Electric field for charge multiplication: Si : ~0.3 MV/cm vs. SiC : ~3 MV/cm (x10!)
- A good gain layer termination is paramount and not easy to achieve! ease of production, fill factor, breakdown voltage, ...

Trench Guarding

In theory trenches are ideal to interrupt the gain layer:

• Good fill factor, very high voltages can be achieved

However:

- Deep trenches (> 4 μ m) are not easy to manufacture
- Aspect ratio of trench is very important, needs to be $\alpha < 5^{\circ}$

Trench + Deep Implant

- JTE in front of trench can be used to pull down field lines and spread out high field areas
- JTE does not necessarily need to be deep enough to cut gain layer
- Very good results independent of trench angle, $V_{BD} \sim 2 \text{ kV}$ even for $\alpha = 12^{\circ}$

JTE Guarding

Build-up of high electric fields

- Gain layer in 4H-SiC is much easier to grow than to implant it (need high energies of several MeV, thick masks, large implantation currents)
- JTE guarding design complementary to trench design
- For epitaxial gain layers, a simple JTE is not sufficient •

Multiple JTE Guards

• If one JTE is not working, use multiple and slowly dissipate potential

Multiple JTE Guards

- If one JTE is not working, use multiple and slowly dissipate potential
- However, implant-implant distance is limited to >10 μm because of thick masks required to stop the high energy ions in implanation

mi2-factory hard masks

Multiple JTE Guards

- Can use floating metal field plates (FMFPs) or support implants to enhance the spreading of electric potential between the guards
- FMFPs are sensitive on the oxide thickness
- Support implants are sensitive on mask alignment to deep implants

Andreas Gsponer

RD50-SiC-LGAD : Layout

- Masks finished and ordered : 464 dies per wafer
- Three guarding designs (JTE and trenches), all with simulated $V_{BD} > 2 \text{ kV}$
- Processing to start January 2025

Finalized Mask Design for RD50-SiC-LGAD

Andreas Gsponer

2nd DRD3 week on Solid State Detectors R&D

10.1109/TNS.2006.872202 (Moscatelli et. al.

1E14

Voltage [V] 10.1109/TNS.2023.3307932 (Rafi et al

1E15

Fluence ((1MeV) n/cm²)

Charge

15

Radiation Hardness of SiC in general

- Radiation Hardness of SiC in general:
- Big CCE decrease after 1E15 n_{eq}/cm^2
- Improves by annealing?
- Irradiation campaign using planar samples / LGADs

- Irradiation model (see <u>10.1016/j.nima.2024.170015</u> <u>10.1109/Austrochip6276</u>
 <u>1.2024.10716221, DRD3 talk</u>) predicts that the LGAD design still
 shows gain (and even increases) after 1E16 n_{eq}/cm²
- However radiation model has shortcomings:
 - Low amount of samples

ADEMY OF

- Measurements were not sensitive to donor removal (10¹⁴ cm⁻³ epi already intrinsic at 1E14 n_{eq}/cm²)
- Study lower irradiation fluences and/or p-type epi

dross Cenonor

SiC-LGAD Radiation Hardness

SiC Timing Performance

Very few MIP timing studies for 4H-SiC:

MIP detection for SiC is challenging in the first place (esp. for 50 $\mu m)$

```
Signal : 57 eh/µm * 50 µm = 2.8 ke, for SNR = 10 \rightarrow noise = 280e
```

What is the intrinsic timing limit for 4H-SiC?

- Ionization model for Si and C, impact of increased density and ϵ_i ?
- How much does the increased charge carrier velocity decrease the Landau noise?
- SiC-LGAD shot noise (gain fluctuations)?

 $\sigma_t^2 = \sigma_{\text{Litter}}^2 + \sigma_{\text{Lonization}}^2 + \dots$

HEPHY INSTITUTE OF HIGH ENERGY PHYSIC

Time Resolution of the 4H-SiC PIN Detector

Tao Yang^{1,2}, Yuhang Tan^{1,2}, Qing Liu³, Suyu Xiao^{1,2,4}, Kai Liu¹, Jianyong Zhang¹, Ryuta Kiuchi¹, Mei Zhao¹, Xiyuan Zhang¹, Congcong Wang¹, Boyue Wu⁵, Jianing Lin⁶, Weimin Song⁶, Hai Lu³* and Xin Shi¹*

measured

```
\sigma_{DUT} = \sqrt{\sigma_{\Delta T}^2 - \sigma_{Ref}^2}, \text{ where } \sigma(5 \text{ mm } \times 5 \text{ mm}, U = 500 \text{ V}) = 94 \pm 1 \text{ ps}, \sigma(5 \text{ mm } \times 5 \text{ mm}, U = 300 \text{ V}) = 103 \pm 1 \text{ ps}, \text{ and}
```

10.3389/fphy.2022.718071

simulated

ORIGINAL PAPER

Radiation Detection Technology and Methods (2024) 8:1140-1147

Check for updates

Design and simulation of a novel 4H-SiC LGAD timing device

Keqi Wang^{1,2} · Tao Yang^{1,3} · Chenxi Fu^{1,3,4} · Li Gong² · Songting Jiang⁵ · Xiaoshen Kang² · Zaiyi Li^{1,3,6} · Hangrui Shi⁴ · Xin Shi¹ · Veimin Song⁴ · Congcong Wang¹ · Suyu Xiao^{7,8} · Zijun Xu¹ · Xiyuan Zhang¹ ·

The time resolution of the LGAD is (35.0 ± 0.2) ps

10.1007/s41605-023-00431-y

AUSTRIAN

CADEMY OF

Bandwidth / Jitter for Planar Sensors

Toy model : uniform charge deposition, charge carriers drift at v_{sate}, current from Shockley-Ramo

$$I(t) = \frac{2Q}{T} \cdot \left(1 - \frac{t}{T}\right) \quad \int I(t) dt = Q$$
$$\int |I(t)|^2 dt = \frac{4Q^2}{3} \cdot \frac{1}{T}$$

• Above ~ 1 GHz, more power density for WBG (SiC / diamond) than for Si, even though ε_i is higher

	Silicon	4H-SiC	Diamond
ρ	$2.33 {\rm g/cm^3}$	$3.21{\rm g/cm^{3}}$	$3.5 \mathrm{g/cm^3}$
ϵ_i	3.62 eV	7.83 eV	13 eV
dQ/dx	$72 e \mu m^{-1}$	$57 e \mu m^{-1}$	$35 e \mu \mathrm{m}^{-1}$

AUSTRIAN

CADEMY OF

 t_{rise} dominated by readout BW, only effect of SNR visible

- Above 1 GHz, drift velocity of 4H-SiC leads to lower jitter noise than Si
- This assumes white noise: (noise not increasing with BW)

$$\sigma_{jitter} = \frac{t_{rise}(f)}{SNR(f)}$$

2nd DRD3 week on Solid State Detectors R&D

• For amplifiers with $t_{peak} < t_{signal}$, we can look at variations of the signal's *center of gravity*

Landau Fluctuations for Planar Sensors

- Analytical treatment by Riegler et. al.
- Reproduce numerically in AllPix²

AUSTRIAN

CADEMY OF

inst	Published by IOP Publishing for Sissa Medialab
	Received: June 23, 2017
	ACCEPTED: October 21, 2017
	Published: November 21, 2017
Time resolu	ition of silicon pixel sensors
Time resolu	ution of silicon pixel sensors
Time resolu	ition of silicon pixel sensors
Time resolu	Ition of silicon pixel sensors
Time resolu	Ition of silicon pixel sensors
Time resolu	Ition of silicon pixel sensors
Time resolu W. Riegler ¹ and G CERN EP, CH-1211 Geneve 2	Ition of silicon pixel sensors . Aglieri Rinella 23. Switzerland

 $\Delta_{\tau} = w(d) \sqrt{\frac{4}{180} \frac{d^2}{v_1^2}} - \frac{7}{180} \frac{d^2}{v_1 v_2} + \frac{4}{180} \frac{d^2}{v_2^2}}{\sqrt{\frac{1}{180} \frac{d^2}{v_2^2}}}$ $MFP \lambda, \qquad Charge carrier velocities v_1, v_2$ $w(d) \approx \frac{1}{\sqrt{\ln d/\lambda}} \qquad Q_{\text{Si}} = 2.33 \text{ g/cm}^3$ $Q_{\text{SiC}} = 3.21 \text{ g/cm}^3$

Landau / PAI

50 100

Charge

500 1000

electrons/cluste

Probability

0.01

 10^{-}

allpix

18

16F

Landau Fluctuations in AllPix²

HEPHY STITUTE OF HIGH ENERGY PHYS

- Numerical Simulations in AllPix²
- Assuming the same mobility in Si and SiC: less Landau fluctuations in SiC due to higher density (lower MFP)

Andreas Gsponer

Landau Fluctuations for Planar Sensors

Inserting Mobility: Worse performance at low fields, but Si performance exceeded at high fields → Need high fields to leverage 4H-SiC saturation velocity (depletion voltage)

Next steps: SiC-LGAD in AllPix², try to investigate gain fluctuations

Conclusions

- RD50-SiC-LGAD design has been finished, production is starting in 2025. Second planar run finishing soon!
- Epitaxially grown gain layers pose special challenges in terms of guarding, which have been adressed using trenches / JTEs with additional FMFP/support implants
- Radiation hardness of SiC-LGADs and donor removal needs to be studied more
- Timing performance of SiC-(LGADs) : Need high bandwidth and electric fields to leverage 4H-SiC material properties and enable performance superior to silicon More simulations (and measurements ©) will be helpful

This project has received funding from the Austrian Research Promotion Agency FFG, grant number 883652.

AUSTRIAN ACADEMY OF SCIENCES

BACKUP

Further SiC Activities at HEPHY

- 4H-SiC material parameter literature review (<u>10.48550/arXi</u> <u>v.2410.06798</u>)
- Irradiation campaign with commercial SiC Schottky diodes (in planning)
- Theoretical estimation of the time resolution of SiC detectors (following work by Werner Riegler, <u>10.1088/1748</u> <u>-0221/12/11/P11017</u>)
- Applications:
- Beam monitoring for ion-beam cancer therapy @ Medaustron (<u>10.1088/1361-6560/ad5072</u>)
- μ-dosimetry and space-dosimetry (upcoming)
- SiC-CMOS electronics design with Fraunhofer IISB (<u>10.1109/Austrochip6</u> <u>2761.2024.10716230</u>)
- Si-LGADs are also investigated → comparison to SiC LGAD later on

ASIC layout of charge sensitive amplifier in $2\mu m$ SiC-CMOS process

LISTRIAN

SiC at HEPHY Timeline

AUSTRIAN ACADEMY OF SCIENCES

Readout Electronics

- For each application, ideal readoutelectronics (amplifiers) exist
- Spectroscopic amplifiers (µs) to high bandwidth (ns)
- Detector pulse is < 0.5 ns

 10 Ghz readout currently in development

10 GHz MiniCircuits Amplifer Eval Board

2nd DRD3 week on Solid State Detectors R&D

Trench Guarding : Angle

Angle needs to be very (unrealistically) good, otherwise there is a breakdown at the trench Error coefficient : $1.0 = 45^{\circ}$

RD50-SiC-LGAD : Guarding

- No bevel edge process at CNM \rightarrow trenches and/or deep-implants
- Need deep implants of sufficient doping and $> 3 \mu m$ to penetrate gain layer
- 4 µm deep Al-implantation by Mi2

Three different guarding structures on wafer: (see backup for more detail)

1: Trench + single deep-implant

- High V_{BD}

- Potential problems with
- Mostly insensitive to process - Small device area
- trench-etching process
- Charge trapping in Poly-Si

2: Deep & support-implants + FMFPs*

- High V_{RD}
- Less sensitive to oxide thickness

- Sensitive to deep implant widths
- Large device area

3: Deep-implants + FMFPs*

- Less volatile processing
- Less sensitive to variation in deep implant widths
- Sensitive to oxide thickness
- Large device area

* Floating metal field plates