

Characterization by IBIC of neutron irradiated SiC detectors at CNA

C. Torres-Muñoz¹, J. García-López^{1,2}, M.C. Jiménez-Ramos^{1,3},

M. Rodríguez-Ramos¹, I. Vila⁴, C. Quintana⁴, J. Duarte⁴, E. Navarrete⁴, D. Rosich⁴, G. Rius⁵, J.M. Rafí⁵, I. Lopez⁵, P. Godignon⁵, G. Pellegrini⁵

ctorres1@us.es

¹ Centro Nacional de Aceleradores (U. Sevilla, CSIC, J. de Andalucia), 41092 Seville, Spain

- ² Dpto. de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41012, Seville, Spain
- ³ Dpto. de Física Aplicada II, Universidad de Sevilla, 41012, Seville, Spain
- ⁴ Instituto de Física de Cantabria (IFCA-UC-CSIC)
- ⁵ Instituto de Microelectrónica de Barcelona (IMB-CNM-CSIC)

Context

Characterization using laser (TPA-TCT)

More info in Ivan Vila's

talk!!

"Observation of signal multiplication in neutron irradiated SiC detectors characterized using TPA-TCT"

Characterization using ions (IBIC)

- C. Quintana et al, "Update on the characterization of neutron irradiated IMB-CNM SiC planar diodes", 41st RD50 Workshop (2022)

- E. Currás et al., "Radiation Tolerance Study of neutron-irradiated SiC pn planar diodes,"

18th "Trento" Workshop (2023)

Context

Characterization using laser (TPA-TCT)

More info in Ivan Vila's talk!!

"Observation of signal multiplication in neutron irradiated SiC detectors characterized using TPA-TCT"

Characterization using ions (IBIC)

Not metalized SiC detector

- 1MW2 (pristine)
- F2W1 (1X10¹⁵ n_{eq}/cm^2)

SiC epitaxy : 50 μ m

Neutron irradiated detector does not present a diode-like behaviour

- C. Quintana et al, "Update on the characterization of neutron irradiated IMB-CNM SiC planar diodes", 41st RD50 Workshop (2022)

- E. Currás et al., "Radiation Tolerance Study of neutron-irradiated SiC pn planar diodes," 18th "Trento" Workshop (2023)

Diode-like behaviour : non-irradiated

No diode-like behaviour : irradiated

Pristine

Characterization with ions

Triple alpha source measurements in vacuum chamber (239Pu, 241Am, 244Cm)

Proton measurements in microprobe beam line (2.7 MeV proton beam)

- CCE absolute measurements

Different polarization conditions

SiC epitaxy : 50 μm

Element	Energy (keV)	Range SiC (μm)
244Cm	5746	19,8
241Am	5424	18,3
239Pu	5093	16,4
1H	2700	52,0

2nd DRD3 2024

05/12/2024

Element	Energy (keV)	Range SiC (µm)
244Cm	5746	19,8
241Am	5424	18,3
239Pu	5093	16,4

- TRIBIC measurement confirms 100 % CCE of pristine detector.
- Voltage limited by readout
- Plateau reached from 80 V.

-Forward polarization in irradiated device

- Smaller signal in forward than in reverse polarization

Microprobe beam line at CNA

Nuclear Microprobe line

Rotating sample holder

Why use the microprobe beam line?

Tandem room

- Small samples ($3x3 mm^2$)
- Good lateral resolution desired
- Low rate (to avoid damage) $\sim 100 \text{ Hz}$
- Rotating sample holder with accuracy of 1º
 - Angle-resolved IBIC

SiC epitaxy \rightarrow 50 μm

Angle (º)	Projected range (μm)
0	52
20	50
40	39
60	26
80	9

SiC epitaxy \rightarrow 50 μm

Angle (º)	Projected range (μm)
0	52
20	50
40	39
60	26
80	9

SiC epitaxy \rightarrow 50 μm

Angle (º)	Projected range (μm)
0	52
20	50
40	39
60	26
80	9

SiC epitaxy \rightarrow 50 μm

Angle (⁰)	Projected range (μm)
0	52
20	50
40	39
60	26
80	9

SiC epitaxy \rightarrow 50 μm

Angle (º)	Projected range (μm)
0	52
20	50
40	39
60	26
80	9

10

20

30

Bragg peak position in SiC (μ m)

50

0

0

200 **Detector; Voltage 70°** F2W1 ; - 800 V 150 CCE (%) 100 **0**° **Electron-dominated signal**

Holes-dominated signal

50

05/12/2024

 h^+

40

2.7 MeV H⁺: F2W1 reverse polarization

2.7 MeV H⁺: F2W1 forward polarization

RSIDA

Infraestructuras

Científicas y Técnicas

Singulares

Centro Nacional de Aceleradores

2nd DRD3 2024

2.7 MeV H⁺: F2W1 forward polarization

Detector; Voltage

F2W1 ; - 800 V

F2W1;+800 V

200

150

500

450

400

0°

5°

10°

20°

200 - _____

2.7 MeV H⁺: F2W1 forward polarization

RSID

Infraestructuras

Científicas y Técnicas

Singulares

Centro Nacional de Aceleradores

2.7 MeV H⁺: F2W1 forward polarization

05/12/2024

- Absolute measurement of the CCE as a function of voltage using ions in different polarizations.
- Irradiated devices higher trapping probability for holes.
- High electric field zone in forward polarization mode (holes multiplication).

Thank you !

-M. Carmen Jiménez-Ramos acknowledges the support of this work through a VI PPIT-US contract.

- Carmen Torres-Muñoz acknowledges the support of this work through a contract that has been funded by the Unión Europea-NextGenerationEU y la Consejería de Universidad, Investigación e Innovación, de la Junta de Andalucía, mediante el Plan de Recuperación de Transformación y Resiliencia (PRTR) y el Plan Complementario de "Astrofísica", subproyecto C17.I01.P01.S17, Proyecto ASTRO21/1.4/4

- This research was funded by the Spanish Ministry of Science, Innovation and Universities grant numbers PID2023-148418NB-C44.

Back-up slices

25 Counts

05/12/2024

Calculation of the absolute CCE value for the pristine detector

Calculation of the absolute CCE value for the pristine detector

Theoretical calculation :

- Deposited energy in detector [SRIM simulation] : $E = (6861 \pm 22) keV$
- Electron-hole pair creation energy (4H-SiC) : $\epsilon_{e^--h^+} = 7.28 \ eV$
- Elementary charge : $e = 1.60 \times 10^{-19} C$

$$Q = \frac{E \cdot e}{\epsilon_{e^- - h^+}} = (1.510 \pm 0.005) \times 10^{-4} \text{ nC}$$

Experimental results :

- Integral = $(0.99 \pm 0.04)nWb$
- Amplifier gain : (130 ± 10)
- Oscilloscope resistance : $R = 50 \Omega$

$$Q = \frac{I}{R \cdot G} = (1.52 \pm 0.18) \times 10^{-4} \text{ nC}$$

- CCE = $(101 \pm 12)\%$

E _{emission} (keV)	E _{exp} [0º] (keV)	$\frac{E_{emision} - E_{exp}[0^{\underline{o}}]}{E_{emision}}(\%)$	E _{exp} [40º] (keV)	$\frac{E_{emision} - E_{exp}[40^{\underline{o}}]}{E_{emision}}(\%)$	$E_{exp} [0^{\underline{o}}] \\ - E_{exp} [40^{\underline{o}}](keV)$
5156	1688	67	1432	72	256
5486	1885	66	1610	71	275
5806	2101	64	1787	69	314

Element	Range SiC (µm)	Range SiC tilting 40 º (µm)
244Cm	19,8	15,2
241Am	18,3	14,1
239Pu	16,4	12,5

2nd DRD3 2024