

Radiation tolerance and annealing studies using test-structure diodes from 8-inch silicon sensors for CMS HGCAL

Leena Diehl (CERN) on behalf of the CMS Collaboration

2nd DRD3 week on Solid State Detectors R&D December 4, 2024 CERN

Campaign overview

- Planar, high resistivity (>3 k Ω cm) pad diodes with 0.5x0.5 cm² active area, cut from 8-inch wafers
- Neutron irradiation at JSI (Jozef Stefan Institute), Ljubljana, Slovenia
- Annealing at 5 temperatures: 60°C, 40°C, 30°C, 20.5°C and 6.5°C
- 60°C, 20.5°C and 6.5°C started Sep 23, 40°C started June 24 and 30° C started Oct 24
- Annealing ongoing: For 30°C and 6.5°C annealing not progressed enough yet for Hamburg model fit

- Leakage current and capacitance vs voltage (IV/CV) and charge collection (CC vs voltage, TCT using IR laser) measurements
- **Goal:** Revisit the Hamburg model for p-type material and extrapolate to lower temperatures, as input for HGCAL operation scenario (0°C)
- High fluences: Concept of depletion voltage not applicable: Extracting a "saturation voltage" from CV measurements instead

* 180um handling wafer, physical thickness 300um

Charge collection efficiency at 600V

- Maximum around 140 days (epi) and 250 days (FZ)
- Slow annealing: Just entered region
 dominated by reverse annealing
- Maximum around 250 hours (epi) and 580 hours (FZ)
- Reverse annealing already further progressed
- Started annealing only 60 days ago: Not far into reverse annealing yet
- Maximum around 8000 min for FZ, hard to identify for EPI

Leena Diehl (CERN)

Charge collection efficiency at 600V

- Maximum around 1000 min (epi) and 1700 min (FZ)
- Clear second maximum in 120um $6e15 n_{eq}/cm^2$ data, also visible for other temperatures

60°C annealing

- Maximum around 90 min (epi) and 120 min (FZ)
- Charge multiplication for the thin sensors at high annealing times, especially at $1.5e16 n_{eq}/cm^2$

Current related damage rate at 400V

Hamburg model: $\alpha(t) = \alpha_{I}^{*} \exp(-t/\tau_{I}) + \alpha_{0}^{-}\beta^{*} \ln(t/t_{0})$

- Calculating the damage parameter *α* from the measured leakage current for each sensor individually
- Extremely sensitive fits:
 - Changes for 20.5°C and 30°C expected with further measurements
 - Data points influenced by the onset of charge multiplication had to be excluded
- Already visible here: Higher fluence does not mean necessarily higher damage parameter
 - Influence of the fixed voltage instead of depletion voltage also influencing the dependence on thickness
 - Split for further analysis by fluence and material (next slide)

 1.23 ± 0.06

 1.55 ± 0.42

 $\alpha_{\rm T}$ [10⁻¹⁷A/cm]:

Current related damage rate at 400V

- Large deviation still from Hamburg model but also large uncertainties on many extracted values
- Differences in slope and absolute values for different fluences and materials outliers influence fits
- Thickness dependence hard to evaluate: Just two samples for floatzone, one for epitaxial deviation between epitaxial and floatzone material prevents direct comparison of all three thicknesses

- Small decrease with fluence of activation energy and frequency factor for floatzone sensors
- Increase with fluence of both parameters for epitaxial sensors but fits for highest fluence have large uncertainty
- Values at 6e15 n_{eq} /cm² similar for the different materials, slightly lower for epitaxial sensor
- In average, higher activation energy and significantly higher frequency factor than the Hamburg model values
- This would mean faster annealing for higher fluences for floatzone, opposite for epitaxial, but in general slower than assumed from Hamburg model

Leena Diehl (CERN)

Effective Doping concentration

- Saturation voltage in FZ sensors exceed measurement limit after some annealing time: Less points to fit for FZ
- Clear difference in minimum location and increase rate after minimum between FZ and epitaxial sensors visible
- Parameters of interest:
 - Timing of minimum, beneficial and reverse annealing time constants
 - Acceleration/ scaling factors for all three parameters for temperature scaling

*Extracted parameters and fits for other sensors and temperatures in the backup (slides 23-26)

 N_{eff} minimum time vs fluence

- Trend: Increase in time with increase in fluence for floatzone
- Not as clear for epitaxial: very similar values, sometimes longer, sometimes shorter for higher fluence
- Unclear how much this is affected by the initial calculation of the in-reactor annealing times

Scaling: Time of the N_{eff} minimum

- Scaling of time of N_{eff} minimum with respect to 60°C
- Significant difference between samples:
 - Same fluence: FZ factor two higher than EPI at 0°C - material or thickness dependence?
 - Same material and thickness:
 10–15% difference for different fluences
- 6.5°C will be used to crosscheck, 30°C data will be added to improve fits as soon as enough data is available

Extrapolated t _{min}	FZ 4e15	FZ 6e15	EPI 6e15	EPI 1.5e16
0°C	767 days	932 days	322 days	397 days
6.5°C	235 days	284 days	107 days	126 days
30°C	5 days	6 days	3 days	3 days

Scaling: Minima - Crosscheck

- Very good agreement between preliminary and extrapolated from scaling from other temperatures
- One exception: 1.5e16 n_{eq}/cm² 120um sensor at 6.5°C potentially caused by in-reactor annealing time calculation uncertainty *based on Hamburg model using parameters found to deviate now*

*Saturation voltages just below or just above the measurement limit have been extracted using the end-capacitance assumption after observing no change of it with annealing time

0.0035

Annealing time constants Floatzone **Epitaxial** log(ح [min]) 15 log(۲ [min]) 17 14 τ_v 6e15 τ_a 6e15 τ_{v} 1.5e16 4e15 τ_a 6e15 τ_{a} 1.5e16 τ_a Hamburg τ_a Hamburg τ_{v} 4e15 τ_{v} 6e15 τ_{v} Hamburg τ_v Hamburg 10 10 CMS HGCAL Preliminary CMS HGCAL Preliminary 0.0031 0.0032 0.0034 0.0035 0.0030 0.0033 0.0034 0.0031 0.0032 0.0033 0.0030 Temperature [1/K] Temperature [1/K]

- Beneficial annealing: Same temperature dependence for different fluences, but deviation from temperature dependence compared to Hamburg model (slope + offset)
- Reverse annealing: Significant fluence dependence in the temperature dependence, higher fluences seem to be closer to Hamburg model
- For higher fluence slower reverse annealing expected at lower temperatures

Acceleration factors of annealing time constants

- No strong fluence dependence in the beneficial annealing for floatzone, slightly more for epitaxial
- Larger deviations in reverse annealing only in agreement with the Hamburg model for one of two fluences
- Extrapolated acceleration factors at 0°C:

[10-4]	Hamburg	4e15 FZ	6e15 FZ	6e15 EPI	1.5e16 EPI
Beneficial annealing	2.14428	1.09443	1.05093	3.588	5.30665
Reverse annealing	0.344539	0.398387	0.11957	1.23564	0.43577

Activation energy and frequency factor

- Decrease of beneficial annealing parameters E_a, k_a with fluence, increase of reverse annealing parameters E_y, k_y
 hard to verify for reverse annealing (only two fluences), same decrease seen for beneficial in leakage current
- Both epitaxial and floatzone values differ from Hamburg model values epitaxial is closer
- This means at 0°C:

Floatzone: Beneficial and reverse annealing slower than expected from Hamburg model Epitaxial: Beneficial and reverse annealing faster than expected from Hamburg model

Conclusions

- General annealing behaviour as expected for all temperatures
- Deviations from the n-type based default Hamburg model values especially for FZ sensors
- Apparent dependencies of time constants, activation energy and frequency factor on material, fluence and potentially sensor thickness
 - Is it still valid to use a 'one model for all' approach at high fluences?
 - This campaign can not fully test all dependencies (e.g. thickness) will be considered for a coming low fluence campaign
- All results are preliminary still more data to collect, fits to be improved, and further analysis parameters to be evaluated (e.g. the annealing amplitudes $N_a, N_y/g_a, g_y$ showing fluence dependence)
- The annealing for floatzone sensors seems to be slower: Minimum expected only after about 800 days at 0°C instead of 400 days as assumed previously by Hamburg model but for epitaxial sensors the minimum would be expected after already 350days
- However, it takes about 150-200 min more until N_{eff} is similar to the value without additional annealing: Assuming 40 months of shutdown at 0°C: Even the worst case (lower E_y extracted from 6e15n_{eq}/cm² sensor) scenario this means about **800-1000 additional days** until the sensor is in the same state (N_{eff} , CC) **as without annealing**, with improved I_{leak} - no drastic reverse annealing effects are expected

BACKUP

Short reminder of HGCAL

- CMS will replace Calorimeter Endcaps (CE) for HL-LHC operation
- CE to be implemented in HGCAL (High Granularity Calorimeter) concept
- Silicon sensors will be used for the electromagnetic section and high radiation regions of the hadronic section of the CE
- ~620 m2 silicon sensors produced on 8-inch wafers
- 3 different thicknesses: 300 μm, 200 μm (Float zone) and 120 μm (Epitaxial) - thinner sensors in high fluence regions
- Fluences of up to 1e16 neq/cm

Key Parameters:

Coverage: 1.5 < |η| < 3.0 ~215 tonnes per endcap Full system maintained at -30°C ~620m² Si sensors in ~26000 modules ~6M Si channels, 0.6 or 1.2cm² cell size ~370m² of scintillators in ~3700 boards ~240k scint. channels, 4-30cm² cell size Power at end of HL-LHC: ~125 kW per endcap

Experimental setup

- Particulars TCT setup upgraded it to IV+CV+TCT setup
- Switchbox to change measurement type automatically
- Sensors are glued and wirebonded to a PCB, placed on a cooled copper holder, connected via SMA connectors

- Saturation voltage extraction
- Measured at 2kHz, -20°C
- Constant capacitance beyond saturation independent of
- annealing time: End-capacitance assumption for saturation voltages around/just above the measurement limit

Leena Diehl (CERN)

Current related damage rate: 400V

Annealing in progress: Changes in the fits with more data possible

Annealing just started. Largest changes expected for 30°C with more data

Onset of charge multiplication: Last data points omitted for high fluence sensors

Current related damage rate: Example for 30°C at 400V

Damage parameter α : $\frac{l}{\mathbf{v}} = \boldsymbol{\alpha} \cdot \boldsymbol{\phi}$

- Damage parameter extraction from leakage current measurements
- Split analysis between Floatzone and Epitaxial sensors
- Difference in normalised current visible for 200um/300um at 4e15 n_{eq}/cm²
 potential dependencies on fluence and thickness to be investigated
- Individual data sets (6.5°C, 20.5°C) not brought to identical annealing times interpolation needed.

Current related damage rate at 400V

Hamburg model - based on n-type sensors and fluences up to 1e15 n_{eq}/cm^2 : $\alpha(t) = \alpha_I^* exp(-t/\tau_I) + \alpha_0 - \beta^* ln(t/t_0)$ "short term" "long term"

- Extremely sensitive fits:
 - Changes for 20.5°C and 30°C expected with further measurements
 - Data points influenced by the onset of charge multiplication had to be excluded
- Differences between Floatzone and Epitaxial: Fluence, thickness or material dependence?
 - Can we still use a "one model for all sensors" approach?
 - Extremely large uncertainties on extracted values
 - Long-term annealing seemingly better described than short-term annealing

Current related damage rate at 400V $\alpha(t) = \alpha_{I}^{*} \exp(-t/\tau_{I}) + \alpha_{0} - \beta^{*} \ln(t/t_{0})$ $1/\tau_{I} = k_{0I}^{*} \exp(-E_{I}/k_{B}T_{a}) \qquad \alpha_{0} = -a + b/T_{a}$

	Hamburg	Floatzone	Epitaxial
$\alpha_{\rm I}$ [10 ⁻¹⁷ A/cm]	1.23 ± 0.06	1.40 ± 0.39	1.35 ± 0.23
k _{0I} [s ⁻¹]	$1.2 * 10^{13}$	8.46 * 10 ¹⁶	$8.04 * 10^{19}$
E _I [eV]	1.11 ± 0.05	1.20 ± 0.08	1.40 ± 0.18
β [10 ⁻¹⁸ A/cm]	3.07 ± 0.18	6.23 ± 0.14	6.57 ± 0.33
a [10 ⁻¹⁷ A/cm]	8.9±1.3	22.35±9.44	26.23±16.49
b [10 ⁻¹⁷ A/cm]	4600±400	0.82 ± 0.25	0.97 ± 0.44

- Difficult to interpret due to large uncertainties and deviations
- Generally: Higher activation energy leads to slower annealing

Neff: Hamburg model fits 60°C

Neff: Hamburg model fits 40°C

Neff: Hamburg model fits 20.5°C

104

Annealing time at 20°C [min]

105

Radiation tolerance and annealing studies

Neff: Extracted fit parameters

60°C	FZ 4e15	FZ 6e15	EPI 6e15	EPI 1.5e16	40°C	FZ 4e15	FZ 6e15	EPI 6e15	EPI 1.5e16	20°C	FZ 4e15	FZ 6e15	EPI 6e15	EPI 1.5e16
9 _a	0.0034	0.0022	0.0028	0.0008	9 _a	0.0027	0.0015	0.0026	0.0013	9 _a	0.0028	0.0018	0.0031	0.0057
$ au_{a}$	40.983	51.389	45.854	31.747	$ au_{a}$	669.8	1036.7	418.4	251.7	$ au_{a}$	10615	13119	6015	3295
9 _c	0.0027	0.0024	0.0015	0.0029	9 _c	0.0028	0.0028	0.0026	0.0028	9 _c	0.0034	0.0027	0.0029	0.0028
9 _y	0.0131	0.0073	0.0124	0.0039	9 _y	0.0127	0.0094	0.0114	0.0036	9 _y	0.0179	0.0169	0.0109	0.0051
$ au_{y}$	2416	1789	1417	1897	τ _y	36027	48595	19325	27130	τ _y	1253601	1846859	350705	931928
t _{min}	115 ₋₁₉ +36	127 ₋₂₂ +4	95 ₋₂₄ +59	82 ₋₁₆ +3	t _{min}	1704 +570 -298	2174 +1279 -539	1036 +386 -193	939 +199 -109	t _{min}	31461 +11492 -5321	35974 +14966 -6718	17538 +582 - 2 ⁸³³	19110 +486 9 ¹⁸⁸⁰

Neff: Extracted fit parameters g_a, g_c, g_v

- Decrease with fluence
- In agreement with previous study
- Hamburg model: (1.81±0.14)*10⁻²cm⁻¹
 -> lower fluences, extrapolating would lead to values in that order
- Decrease with fluence
- In agreement with previous study •
- Hamburg model: (5.16±0.09)*10⁻²cm⁻¹
 - -> in agreement with the lowest fluence measured here

- No clear fluence dependence
- Shift for higher fluences
- Hamburg model: (1.49±0.04)*10⁻²cm⁻¹
 -> one magnitude larger than measured

Leakage current

Decrease with annealing time

Current related damage factor $\alpha = \frac{\Delta l}{V \Phi_{eq}}$ Current increase is independent of silicon production process (FZ, Epi, Cz) and impurity concentration types and concentration. It can be a fluence indicator. No reverse annealing for the leakage current.

Annealing is strongly temperature dependent.

M.Moll, Bethe Forum on Detector Physics 2014

Change of effective doping concentration

- For n-type sensors: Type inversion, N_{eff} changes from positive to negative, electric field building up from the backside
- Reason to change to p-type sensors at HL-LHC detectors

- Short term: Beneficial annealing
- Long term: Reverse annealing
- Time constants are temperature dependent
 - \rightarrow Detectors need to be cooled to avoid entering reverse annealing

M.Moll, Bethe Forum on Detector Physics 2014

Potential thickness dependence in leakage current

Acceleration factor w.r.t. 20°C

