

2nd DRD3 Collaboration Week – Radiation Damage Working Group

Defect Assisted Research for Dark Matter Applications (D.A.R.M.A.)

<u>Evangelos – Leonidas Gkougkousis</u>¹, Ioana Pintilie², Andrei Nitescu², Ben Kilminster¹

University of Zurich
NIMP - Bucharest

Geneva, 4th December 2024

Overview

Introduction • Introduction

Dark Matter

Skipper CCDs

Deep Level

Spectroscopy

Transient

Setup

Conclusion

- Silicon Lattice Overview
- Introduction to Lattice Defects
- Defects as tools is Physics (V-N Defect, Dark matter detection)

• Skipper CCDs & Dark Matter

- What is Dark Matter?
- Challenges in direct detection experiments
- Skipper CCDs and their use as dark matter detectors

Deep Level Transient Spectroscopy

- Principles and Methodology
- Integration with Skipper CCDs
- Charge Injection & Lock-In Amplifiers

Experimental • Experimental Setup and Results

- Overview and Current Status
- Initial results on test diodes
- Integration with test CCDs

Conclusions

4 / 12 / 2024

4 / 12 / 2024

E. L. Gkougkousis

4

E. L. Gkougkousis

Dark Matter & Skipper CCDs

Introduction What is Dark Matter?

- Dark matter Evidence
 - Galaxy rotation curves
 - Velocity dispersions in binary star bound systems
 - Galaxy cluster studies
 - Gravitational lensing
 - Structures in the CMB angular maps
 - Bullet cluster observations
 - Barrion Acoustic oscillations.

4 / 11 / 2024

Dark Matter

Skipper CCDs

Deep Level

Transient

Dark Matter & Skipper CCDs

Challenges in Direct Detection Experiments Introduction

- Essentially background counting experiments
- Require extremely good modeling of radiogenic / cosmogenic contributions
- Extremely low expected event rate event rate: $\rho_0 = 0.3 \text{ GeV/cm}^3 \& M = 5 \text{ Gev/c}^2 \longrightarrow 60 \text{ k. particles /cm}^3$
- In the 1 10 GeV range, once can approximate mainly with nuclear recoil interactions ۲
- Energy transfer thresholds can be a few (~30 keV)

Dark Matter Skipper CCDs

Deep Level Transient

4 / 11 / 2024

E. L. Gkougkousis

Ancient lead shielding

Electroless cooper (oxygen free) Strict control of material exposure Detailed GEANT4 simulations

4 / 11 / 2024

Introduction

Skipper CCDs as Dark Matter Detectors

10²

(b)

10

Data

—σ₁/ √N_{skin}

Introduction

Dark Matter Skipper CCDs

Deep Level Transient Spectroscopy

Experimental Setup

Conclusion

Implementation on Skipper CCDs

- Every CCD readout system needs four components:
 - **Bais circuits:** on-chip preamplifier biasing
 - Clock generation: timing and charge shift for readout
 - Singal digitization: ADC channels for sampling
 - Control / connect logic: FPGA / microcontroller

Issues with DLTS in CCDs

- No timing information available
- Transients inaccessible
- Pixelized structure

DAMIC-M Acquisition / Control Module (ACM)

Get timing information at the source by varying injection pulse length

- Use phase displacement and scan over all available values to compensate
- Use Fourier deconvolution with pixel information deducted by clock cycle
- Perform regular DLTS matrix scans in fixed intervals and corelate with recorded clusters to identify new / annealed defect for noise control
- Perform comparative matrix assessment as a handle to increase dark mater sensitivity

Experimental Setup & Results

DAMIC-M Wafer

Small CCD (1022 x 682)

Pixel Area length:9.9 mm Total length: 12.3 mm Width: 16.92 mm

350

— Phosphorous

-Hydrogen

5

6

-Oxygen -Silicon

Introduction

Dark Matter Skipper CCDs

Deep Level Transient Spectroscopy

Experimental Setup

Conclusion

•Conclusions

- First presentation of concrete defect-based method for dark matter detection
- Expected increase in sensitivity and better noise mitigation
- Target implementation at CCD based Dark Matter experiments (DAMIC-M, DAMIC@SNOLAB, OSCURA) with minimal hardware intervention
- Phase displacement and Fourier deconvolution for pixel-level analysis

Current Status

- Initial measurements prove sufficient sensitivity
- Test structures available at high numbers
- Setup implemented with necessary hardware
- Next Steps
 - First injection on CCDs though HV line for electronic state pumping
 - Implementation of clock-synchronized lock-in amplifier
 - 2D mapping of defects of several matrices to verofy consistency

Introduction

Dark Matter Skipper CCDs

Deep Level Transient Spectroscopy

Measurement cycle at fixed T

Principle

Deep Level Transient Spectroscopy

[1] reverse bias V_R junction under reverse bias defect states are not occupied

[2] injection pulse V_P

- reduction of reverse bias
- injection of majority carriers
- occupation of defect levels

[3] reverse bias V_R

- junction under reverse bias
- thermal emission of carriers
 - · expansion of depletion zone
 - decrease of capacitance

1 Quiescent reverse bias (V_R)

Majority carrier pulse (Vp)

EC

Et

Ev

EC

Et

Ev

n

4 / 12 / 2024

E. L. Gkougkousis

•DAMIC-M System – Electronics Rack

4 / 12 / 2024

E. L. Gkougkousis

Power Management

Slow Control and Data bus

4 / 12 / 2024

DAMIC Experiment

2023: DAMIC@SNOLAB observes low-mass 5.4 Sigma excess using skipper CCDs confirms previous 3.4 σ excess (PRL. 125 (2020) 241803)

UZH group pioneering new technique of using silicon lattice defects (radiation damage) to identify DM nuclear recoils

Gives CCDs capability to distinguish nuclear and electronic recoils !

E. L. Gkougkousis

Silicon Leakage Current Temperature dependence

- Measurement performed using optical excitation and studying absorption coefficient resonances
- Sample of p-type, FZ, 10¹² cm³ dopant concentration

At 0 K theoretical maximum of 1.1701 eV, drops to 1.1249 ev at 300 K **Origin:** Relative position shift of conduction-valence bands

Thermal-related lattice dilatation

Linear at high temperatures

total bandgap variation

Only accounts for 25 % of the

Non-linear at low temperatures

- Temperature dependent electron-lattice interaction
 - Equivalent to the "Brownian effect", but in a band structure
 - Accounts for the major contribution to the change
 - > Temperature dependence:
 - $\Delta E_{gi} \sim T^2$ for T<< Θ & $\Delta E_{gi} \sim T$ for T>> Θ
 - θ for Si: 645 K (Debye Température)
 - Sources of dark current in semiconductors:
 - ✓ Generation current (I_g)
 - ✓ Trap Assisted tunneling (TAP), Fowler Nordheim formula

 \geq

- ✓ Field Assisted tunneling (Pool-Frenkel emission)
- $\checkmark~$ Impact ionization (E > 15 V / $\mu m)$

Effects reducing dark current:

✓ Recombination

E. L. Gkougkousis

Éğğêçt(ș

Buľl

E. L. Gkougkousis

Radiation Effects I

The Hamburg N_{eff} Model

G. Lindstrom et al., NIM A 466(2001) 308-326 <u>"Radiation damage in silicon detectors"</u>

Radiation damage modeling			
Constant Damage Terms	Acceptor Introduction	$\frac{dN_{acc.}^{con.}(t)}{dt} = g_{C_A} \times \Phi_{eq}(t)$	
	Donor Introduction	$\frac{dN_{don.}^{con.}(t)}{dt} = g_{C_D} \times \Phi_{eq}(t)$	
	Acceptor Removal	$\frac{dN_{acc.}^{rem.}(t)}{dt} = -c_{C_A} \times \Phi_{eq}(t) \times N_{acc.}^{rem.}(t)$	
	Donor Removal	$\frac{dN_{don.}^{rem.}(t)}{dt} = -c_{C_D} \times \Phi_{eq}(t) \times N_{acc.}^{rem.}(t)$	
Short term annealing	Acceptor Reduction	$\frac{dN_{acc.}^{short.}(t)}{dt} = g_A \times \Phi_{eq}(t) - k_A(T) \times N_{acc.}^{short.}(t)$	
Long term annealing	Max Introducible Acceptors	$\frac{dN_{acc.}^{Max.long.}(t)}{dt} = g_y \times \Phi_{eq}(t) - k_Y(T) \times N_{acc.}^{Max.long.}(t)$	
	Acceptor Introduction	$\frac{dN_{acc.}^{long.}(t)}{dt} = k_Y(T) \times N_{acc.}^{Max.long.}(t)$	

Acceptor removal, Defect Kinetics (simplified ③)

- Incident particle hits silicon atom and created Vacancy (V) and Interstitial Silicon (Si_i)
- Si_i Propagates and can transform substitutional Boron/Carbon to B_i/C_i (interstitial),
- B_i/C_i can form several defects, but the most prominent in high resistivity silicon is:

$$\begin{array}{ccc} \circ & Si_i + B_s \rightarrow B_i + O \rightarrow B_iO_i \\ r & Si_i + C_s \rightarrow C_i + O \rightarrow C_iO_i \end{array}$$

Change type of final defects but not amount of active implant

- Since B_i and C_i both compete for the same Si_i , if we introduce more Carbon we would expect to from less B_iO_i defects and more C_iO_i
- If we exchange Boron with a less mobile (heavier) atom (Ga), then we should also enhance C_iO_i defects instead of Ga_iO_i

Mobility & Trapping

N_{eff} – Dynamic Model

Radiation damage modeling			
Constant Damage Terms	Acceptor Introduction	$N_{acc.}^{con.}(t) = g_{C_A} \times \int_0^t \Phi_{eq.}(\tau) \partial \tau$	
	Donor Introduction	$N_{don.}^{con.}(t) = g_{C_D} \times \int_0^t \Phi_{eq.}(\tau) \partial \tau$	
	Acceptor Removal	$N_{acc.}^{rem.}(t) = f_{c_A} \times N_{eff.}(0) \left(1 - e^{-c_{c_A} \int_0^t \Phi_{eq.}(\tau) \partial \tau}\right)$	
	Donor Removal	$N_{don.}^{rem.}(t) = f_{c_D} \times N_{eff.}(0) \left(1 - e^{-c_{c_D} \int_0^t \Phi_{eq.}(\tau) \partial \tau}\right)$	
Short term annealing	Acceptor Reduction	$N_{acc.}^{short.}(t_i) = g_A \times \frac{\int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau}{\delta t} \times \frac{\left(1 - e^{-k_a(T_i) \times \delta t}\right)}{k_a(T_i)} + N_{acc.}^{short.}(t_{i-1}) \times e^{-k_a(T_i) \times \delta t}$	
Long term annealing	Max Introducible Acceptors	$N_{acc.}^{Max.long.}(t_i) = g_Y \times \frac{\int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau}{\delta t} \times \frac{\left(1 - e^{-k_Y(T_i) \times \delta t}\right)}{k_Y(T_i)} + N_{acc.}^{Max.long.}(t_{i-1}) \times e^{-k_Y(T_i) \times \delta t}$	
	Acceptor Introduction	$\begin{split} N_{acc.}^{long.}(t_{i}) &= N_{acc.}^{long.}(t_{i-1}) + \\ & \int_{t_{i-1}}^{t_{i}} \Phi_{eq.}(\tau) \partial \tau / \\ g_{Y}(T) \times \frac{\sqrt{\delta t}}{k_{Y}(T)} \times \left(k_{Y}(T) \times t + e^{-k_{Y}(T)t} - 1\right) + \\ & N_{acc.}^{Max.\ long.}(t_{i}) \times \left(1 - e^{-k_{Y}(T)t}\right) \end{split}$	

Sources of Dark Current

Sources of dark current in semiconductors:

- ✓ Generation current (I_g)
- ✓ Trap Assisted tunneling (TAP), Fowler Nordheim formula
- ✓ Field Assisted tunneling (Pool-Frenkel emission)
- ✓ Impact ionization ($E > 15 V / \mu m$)

Effects reducing dark current:

✓ Recombination

. Jt_2 QUASI-CONDUCTION BAND NO FIELD qΦ ε

Dielectric

Anode

 \mathcal{E}

Cathode

Éğğêçtjş

Íŋtſêsğắçê

DAMIC-M Design

