Defect investigation in irradiated ATLAS18 ITk Strip Sensors using transient spectroscopy techniques

<u>Christoph Klein</u>, Jeff Dandoy, Damir Duvnjak, Callan Jessiman, John Keller, Thomas Koffas, Ezekiel Staats, Yuzhan Zhao

on behalf of the ATLAS ITk Strip Sensors community

2nd DRD3 Week 04-Dec-2024

Motivation

- ITk Strip Sensors will degrade with increasing radiation damage
- necessity to reliably predict behaviour and adapt operational parameters e.g. bias voltage
- modelling of radiation damage effects in digitization for detector readout
 - currently, simulation methods too slow
 - look-up table (LUT) method for fast and accurate predictions
- custom ITk Strips model of radiation damage in silicon sensors informed by direct measurements

TCAD + AllPix2 pipeline talk by Jeff Dandoy

- measurements on MD8 diodes
- samples mounted on heatsinks and wire-bonded contacts for implant and GR
- previous tests performed on unirradiated and irradiated devices
 - unirradiated halfmoons from batch with high current main sensors
 + reference samples from 'normal' batch
 - irradiated samples with irradiation done at CYRIC with 70 MeV protons
 - 3 different fluences (10% uncertainty) and annealed 80min@60°C:

4.57e14 n_{eq} /cm² 8.34e14 n_{eq} /cm² 1.54e15 n_{eq} /cm²

- ⇒ presented during 'Hiroshima' Symposium 2023
- neutron/gamma-irradiated samples not yet tested
- recently received CERN-PS 24GeV proton-irradiated samples

Measurement methods: DLTS/I-DLTS

- 1. DUT is under constant reverse bias
- filling pulse with specific voltage V_P and duration is applied, adjusted to trap states of interest
 - V_{p} as reduced reverse bias \rightarrow majority carrier traps (holes)
 - V_p slight forward bias \rightarrow minority carrier traps (electrons), if capture rate much larger than competing majority traps
- 3. bias back to prior level, measure transients
 - capacitance or current transients, depending on sample
- usually average O(100) transients per temperature point
- plot ΔC or ΔI vs. temperature for fixed rate window corresponding to emission rate
- analysing spectrum for varying rate window [t₁; t₂] yields Arrhenius plot of trap levels

Measurement methods: DLTS/I-DLTS

- 1. DUT is under constant reverse bias
- 2. filling pulse with specific voltage V_P and duration is applied, adjusted to trap states of interest
 - V_P as reduced reverse bias \rightarrow majority carrier traps (holes)
 - V_p slight forward bias \rightarrow minority carrier traps (electrons), if capture rate much larger than competing majority traps
- 3. bias back to prior level, measure transients
 - capacitance or current transients, depending on sample
- usually average O(100) transients per temperature point
- plot ΔC or ΔI vs. temperature for fixed rate window corresponding to emission rate
- analysing spectrum for varying rate window [t₁; t₂] yields Arrhenius plot of trap levels

Measurement methods: O-DLTS/PICTS

- Optical-DLTS and Photo-Induced Current Transient Spectroscopy variants of basic DLTS/I-DLTS
- difference: use LED for injection and trap filling
- IR-LED (1050nm) has high penetration depth, energy slightly above Si bandgap
- LED pulse allows charge injection above what is possible with (forward) electrical filling pulse; more/different traps can be saturated
- can also use differential modes for measurements to subtract baseline current

Measurement methods: O-DLTS/PICTS

- Optical-DLTS and Photo-Induced Current Transient Spectroscopy variants of basic DLTS/I-DLTS
- difference: use LED for injection and trap filling
- IR-LED (1050nm) has high penetration depth, energy slightly above Si bandgap
- LED pulse allows charge injection above what is possible with (forward) electrical filling pulse; more/different traps can be saturated
- can also use differential modes for measurements to subtract baseline current

Unirradiated diodes: DLTS spectra

- DLTS measurements performed for different bias voltage and filling pulse settings
 - common trap at ~175K seen in all diodes
 - negative offset observed, mitigated with GR at GND
 - peaks at ~100K not consistent
 between different scan parameters
 no clear Arrhenius plot

> only true additional defect observed for W153 at ~225K

confirmed over multiple runs and 2 diode samples

Unirradiated diodes: Arrhenius analysis

- good trap saturation for 10ms filling pulse
 - flat relative trap concentration as indicator
- increased transient amplitude for larger bias
 - no changes to overall spectrum
- Arrhenius plots from rate window analysis
 - derive trap parameters from linear fits

T _{median} [K]	E _T [meV]	σ [cm²]
175 (common)	310 - 390	10 ⁻¹⁴ - 10 ⁻¹³
225 (W153 only)	443 ± 6	7.5 x 10 ⁻¹⁵ ± 1.4X

Irradiated diodes: I-DLTS spectra

- capacitance transients did not yield reliable results
 - high trap concentration
- I-DLTS spectra very clean
 - >270K could not be fully explored due to high current
- additional traps observed using forward injection pulse in double-pulse setting
- observable traps limited to those with largest capture cross-section

Irradiated diodes: PICTS spectra

- observable defects even at low temperatures
 - not seen in I-DLTS
- convolution of (at least) two trap states in large peak
- trap filling purely through LED (could be combined with electrical pulse)
 - D-PICTS to subtract baseline current without LED
- shorter 1ms filling pulses give stable trap saturation

Irradiated diodes: I-DLTS Arrhenius analysis

- good trap saturation for 100ms filling pulse
- higher trap concentrations in devices irradiated to higher fluences
- no significant variation in trap parameters with higher fluence
- observed trap parameter precision limited due to high trap concentration

$\Phi [n_{eq}/cm^2]$	E _T [meV]	σ [cm²]
4.57e14	452 ± 4	2.7 x 10 ⁻¹⁴ ± 1.2X
8.34e14	442 ± 7	1.5 x 10 ⁻¹⁴ ± 1.5X
1.54e15	469 ± 3	3.2 x 10 ⁻¹⁴ ± 1.2X

Irradiated diodes: I-DDLTS Arrhenius analysis

- forward injection pulse
 - remove large signal with double-pulse measurement
- 2-Gaussian deconvolution yields second trap contribution in peak flank
 - larger uncertainties on fit results of secondary peak component

$\Phi [n_{eq}^{\prime}/cm^2]$	E _T [meV]	σ [cm²]
4.57e14	521 ± 7	6.9 x 10 ⁻¹³ ± 1.4X
	457 ± 28	7.3 x 10 ⁻¹⁵ ± 3.6X
8.34e14	539 ± 9	1.4 x 10 ⁻¹² ± 1.5X
	686 ± 42	1.9 x 10 ⁻¹⁰ ± 6.8X
1.54e15	516 ± 6	2.3 x 10 ⁻¹³ ± 1.4X
	465 ± 41	4.2 x 10 ⁻¹⁵ ± 6.5X

Irradiated diodes: PICTS Arrhenius analysis

- observed trap concentration much higher than for electrical injection
- shift in trap energy compared to I-DLTS

Φ [n _{eq} /cm²]	T _{peak} [K]	E _T [meV]	σ [cm ²]
4.57e14	200	399 ± 6	3.2 x 10 ⁻¹⁴ ± 1.5X
	240	452 ± 16	1.3 x 10 ⁻¹⁴ ± 2.2X
8.34e14	200	387 ± 7	1.4 x 10 ⁻¹⁴ ± 1.5X
	240	513 ± 13	3.0 x 10 ⁻¹³ ± 1.9X
1.54e15	200	405 ± 10	2.3 x 10 ⁻¹⁴ ± 1.8X
	240	487 ± 29	8.8 x 10 ⁻¹⁴ ± 4.1X

- started collecting trap parameters for unirradiated + irradiated MD8 diodes
 - create custom radiation damage model in TCAD with DLTS-measured defects
- established pipeline to build LUTs from ITk Strip Sensor simulations

<u>Outlook</u>

- measure other irradiated diode samples
 - mainly use PICTS
 - currently ongoing
- compare observed traps for different sources of irradiation + fluence
 - CYRIC 60MeV vs. CERN-PS 24 GeV protons
 - comparison between proton/neutron/gamma samples

Backup

Measurement methods: DDLTS, Capture Kinematics

• Capacitance Double-Pulse DLTS (DDLTS) measured at temperature of observed trap

V_{fill 2}

capacitance

electron

traps

hole

traps

acceptors

0

example: B_s VO_i

-0

transients

 progressively increasing filling pulse at fixed bias \Rightarrow deep level trap profile

 fixed pair of filling pulses at increasing measurement bias \Rightarrow field strength dependence; indicates acceptor/donor state $\mathbb{V}_{\text{fill}\,1}$

V_{measure 2}

donors

<u>•</u>

 $P_{\rm S} = C_i O_i \quad TDD$

V_{measure r}

amphoteric

levels

-

<u>+</u>

VV

 E_C

 E_i

 E_V

thesis

Ph.D.

Moll,

Ξ

• increasing filling pulse duration \Rightarrow capture kinematics; defect type

PICTS: 1.54e15 n_{eq} /cm² sample – all traps

