

Science and Technology Facilities Council

Timing and CCE Performance of the LGAD from Teledyne e2v

Philip Patrick Allport⁵, Daniela Bortoletto³, Laura Gonella⁵, Martin Gazi³, Daniel Hynds³, Douglas Jordan⁴, Ioannis Kopsalis⁶, Jonathan Mulvey⁵, Steve Mcmahon¹, Richard Plackett³, Konstantin Stefanov⁷, E. Giulio Villani^{1,3}, Trevor Vickey², <u>Dengfeng Zhang²</u>

¹STFC-RAL, ²University of Sheffield, ³University of Oxford, ⁴Teledyne e2v, ⁵University of Birmingham, ⁶National Technical University of Athens, ⁷The Open University

Dec. 04, 2024

The 2nd DRD3 Week on Solid State Detectors R&D@CERN

LGAD Design

- Designed at PPD of Rutherford Appleton Laboratory,
 - + 50 μ m thick high resistivity epitaxial layer (1e13 cm⁻³) on Cz substrate,
 - + Gain: 10-50,
 - Target for the time resolution of 30-50 ps or better.
- TCAD simulation completed for the doping, breakdown, gain, etc.

Dec. 04, 2024

The 2nd DRD3 Week

LGAD from Teledyne e2v

- Fabricated on 6" Wafer at Teledyne e2v, UK,
- Two batches have been fabricated with different implant doses and energies:
 - + Batch 1: LGAD and PiN (1,2, 4 and 2×2 of 1×1 mm² cells):

Wafer	GL dose	GL energy							
19,20,21	1.00	1.00	Cell	Cathode	Laser hole	Cathode to	p-stop	p-stop to Guard	Guard ring
17,18	1.07	1.00	layout	diameter [µm]	diameter [µm]	p-stop [µm]	width [µm]	Ring [µm]	width [µm]
15,16	0.92	1.05	1	4000	3020	156	6	152	332
12,13,14	1.00	1.05	2	2000	1510	78	6	76/96	166
9,10,11	1.07	1.05	-	1000	755	30	6	38/18/58/68	83
7,8	1.15	1.05	5	1000	755	37	0	20/00	1((
4,5,6	1.00	1.11	4	1000	/55	39	6	38/68	166
2,3,24	1.07	1.11							
Dec. 04, 2024	1		The	e 2nd DRD	3 Week				3

LGAD from Teledyne e2v

- Fabricated on 6" Wafer at Teledyne e2v, UK,
- Two batches have been fabricated with different implant doses and energies:
 - + Batch 2: Add the LGAD Array (15×15 cells of 1.3×1.3 mm²)

Dec. 04, 2024

LGAD Leakage Current after neutron irradiation

GL dose

1.07

9

GL energy

1.05

- 1 mm LGAD device from Wafer 2/8/9, measured at -20 °C,
- Neutron irradiation performed at Jozef Stefan Institute in Ljubljana:
 - Wafer neutron fluence: 1×10^{13} - 1×10^{16} 1 MeV n_{eq}/cm²

LGAD Capacitance after neutron irradiation

- LGAD device from Wafer 2/8/9, measured at -20 °C,
- Neutron irradiation performed at Jozef Stefan Institute in Ljubljana: Wafer GL dose GL energy
 - + neutron fluence: 1×10^{13} - 1×10^{16} 1 MeV n_{eq}/cm²⁸
 - annealed at 60 °C for 80 min
- Gain Layer depletion voltage is 20-30 V and the fully depleted voltage is 30-40 V before irradiation.

The 2nd DRD3 Week

Dec. 04, 2024

1.07

1.15

1.07

1.05

1.05

1.11

9

LGAD Capacitance after proton irradiation

• LGAD device from Wafer 2, measured at -20 °C,

Wafer GL dose GL energy

2 1.07 1.11

7

- Proton irradiation performed at MC40 cyclotron with 27 MeV protons in Birmingham.
- Acceptor Removal Coefficient: 9.7±0.5×10⁻¹⁶ cm², similar with the value derived from neutron irradiated devices, but slightly higher,
- More results in M. Gazi's <u>talk</u> at the 41st RD50 Workshop and J. Mulvey's <u>talk</u> at the 38th RD50 Workshop.

TCT Setup for LGAD

• Modified TCT setup at PPD of RAL, another twin setup at OPMD (Oxford):

- Stage for DUT and telescope movement,
- Chiller to lower the temperature (-20 °C) for test irradiated sensors,
- Infrared Laser (1064 nm -15 ps) for charge injection,
- Two-stage amplifier for signal amplification \implies Next Page
- Signal is readout by fast oscilloscope (Tektronix Oscilloscope: 33 GHz, 100 GS/s).

TCT Setup for LGAD

• The output signals from the LGAD are conditioned by a two stage amplifier:

- COLA (Compact OPMD LGAD Amplifier) designed at Oxford-OPMD with a gain of 50 dB and bandwidth > 1 GHz,
- The second stage is a commercial voltage amplifier with variable gain (set to 30 dB in our measurement).

Dec. 04, 2024

10

Dec. 04, 2024

LGAD CCE and Gain after neutron irradiation

- 1 mm LGAD from Wafer 9 with a typical breakdown voltage of ~450 V before irradiation, measured at -10 °C,
- The injected charge was calibrated using PiN: 0.54 fC,
- Neutron irradiation performed at JSI:
 - + neutron fluence: $1 \times 10^{14} 2 \times 10^{15}$ 1MeV n_{eq}/cm²
- LGAD after neutron irradiation of $5 \times 10^{14} n_{eq}/cm^2$ can still provide a gain of ~10 at 550 V

-15

-10

-5

0

5

10

15

20

charge [C]

LGAD Time Resolution after neutron irradiation

- The time resolution was measured using the Split Delay and Recombine technique with various CFD thresholds:
 - CFD threshold ranging from 20% to 60%
- Un-irradiated LGAD provides a time resolution (jitter) of <50 ps at 300 V,
- LGAD after irradiation of 5×10^{14} n_{eq}/cm² can still provide a time resolution of 70-80 ps at 500 V,
- CFD threshold also has slight effect on time resolution.

Dec. 04, 2024

Wafer	GL dose	GL energy
9	1.07	1.05

LGAD Gain after proton irradiation

1.07

1.11

- Proton irradiation performed at MC40 cyclotron with 27 MeV protons in Birmingham, UK
 Wafer GL dose GL energy
- Gain measured using TCT technique at -20 °C at Birmingham,
- LGAD after irradiation of $5.7 \times 10^{14} n_{eq}/cm^2$ can still provide a gain of ~10 at 550 V, similar with the performances of neutron-irradiated devices.

Dec. 04, 2024

The 2nd DRD3 Week

Beta source setup for LGAD

- Timing test were performed using a beta source (⁹⁰Sr),
- A second LGAD with know time resolution was used as reference.

Setup at OPMD

• Time resolution was derived from the time difference between two LGADs.

Dec. 04, 2024

LGAD Time Resolution after proton irradiation

1.11

- Proton irradiation performed at MC40 cyclotron with 27 MeV protons in Birmingham, UK GL dose GL energy Wafer 1.07
- Time resolution was obtained from measurement using the the beta source,
- LGAD after irradiation of 5.7×10^{14} n_{eq}/cm² can still provide a time resolution of ~60 ps at 550 V and CFD threshold of 20%.

R/O ASIC for LGAD: Yelnix

- Yelnix: R/O ASIC using 28 nm CMOS technology was designed at RAL for LGAD read out:
 - + The ASICs have been successfully fabricated and tests are underway at RAL,
 - + Target rms-jitter of <20 ps, ToA and ToT measurements,
- Test board has also been designed and is also ready for LGAD test.

LGAD for Low-LET dosimetry

- The intrinsic gain of LGAD devices is a possible solution to improve the signal to noise ratio for low LET dosimetry application:
 - + microdosimetry in proton therapy, heavy ion therapy, and space radiation.
- LGAD gain obtained using ion beam induced charge (IBIC) of proton and carbon at Australian Nuclear Science and Technology Organization (ANSTO):

Measured median energy deposition maps for protons of varying energies on the Type 4 LGAD from WF2 and the gain as a function of bias voltage.

J. W. Archer et al., "A Two-Dimensional Characterization of Low-Gain Avalanche Diodes for Low-LET Microdosimetry," in IEEE Transactions on Nuclear Science, vol. 71, no. 3, pp. 342-351, March 2024

Dec. 04, 2024

TI-LGAD from Micro

- New batch of Trench-Isolated LGAD has been fabricated at Micron Semiconductor Limited,
- Test using TCT setup at RAL is underway,
- More detailed and the initial test results can been found in Fasih's <u>talk</u> at the 1st DRD3 Week.

- Two batches of LGAD have been fabricated at Teledyne e2v,
- LGAD Devices have been measured before and after neutron/ proton irradiation:
 - damage constant and the acceptor remove coefficient have been extracted,
 - gain and time resolution have been measured using either a TCT or beta source setup.
- LGAD application in Low-LET dosimetry has been investigated,
- New 28 nm R/O ASIC has been fabricated and will be used to perform multi channel R/O of Teledyne e2v LGAD,
- Tests on TI-LGAD from Micron Semiconductor is underway,
- Deep gain layer LGAD with deep trench isolation is under investigation.

2D/1D Scan of the TCT

• 1D/2D scan can be performed using the current TCT setup:

Compact OPMD LGAD Amplifier (COLA)

• A Trans-Impedance Amplifier (TIA) board designed by OPMD of the University of Oxford:

Time Resolution after neutron irradiation

Leakage Current of the LGAD

- 1 mm LGAD device from Wafer 2, measured at -20 °C,
- Proton irradiation performed at MC40 cyclotron with 27 MeV protons in Birmingham.

Second batch of LGAD from Teledyne

- Wider range of layouts and arrangements
 - Single devices 1×1 mm² (variation of design parameters)
 - + 2×2 arrays of 1×1 mm² devices
 - + 3×3 arrays of 1x1 mm² devices
 - + 15×15 array of 1.3×1.3 mm²LGAD

Teledyne e2v LGAD: IV

University of Sheffield

27