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ITk-Strip Basics
• For HL-LHC, new ATLAS charged-particle tracker (ITk) with inner Pixel and outer Strip detectors 
• ITk-Strip: 4 barrel layers and 6 endcap disks of paired strip sensors

Several ITk-Strip layers



3

ITk-Strip Basics
• Sensors are AC-coupled n-type implants in a p-type bulk, separated by p-stops 
• Expect lifetime fluences of ~50 MRad, or 1.6×1016 1-MeV neq/cm2 

• Nominally biased to ~300V, increasable to ~700 V to counteract radiation damage
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Motivation for Precise Digitization Model

Reduction of collected charge with fluence

neutron

high-E proton

low-E proton

low-E proton

Charge collection study with the ATLAS ITk  
prototype silicon strip sensors ATLAS17LS

Extreme radiation fluences will degrade performance of silicon sensor 
• Operational: How to adapt? When & how high should we increase bias voltage? 
• MC Simulation: Tracker modeling of charge-collection inefficiency & charge sharing between sensors

https://www.sciencedirect.com/science/article/abs/pii/S0168900220308196
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Current Digitization Strategy

Modelling radiation damage to pixel sensors in the ATLAS detector 

• For current ATLAS tracker, only Pixel layers simulate performance after radiation damage 
• For HL-LHC, radiation damage of outermost strip detector will be significant & needs simulation 

• Simulation propagates groups of deposited charges  
calculates induced readout signal from drift & trapping

https://doi.org/10.1088/1748-0221/14/06/P06012
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Current Digitization Strategy

Modelling radiation damage to pixel sensors in the ATLAS detector 

• Complex simulation utilizes fluence-specific 
inputs at several points: 
• Electric field
• Weighting (Ramo) potential
• Trapping constant

• Slow to run, not tenable in HL-LHC conditions
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Current Digitization Strategy

Modelling radiation damage to pixel sensors in the ATLAS detector 

• Complex simulation utilizes fluence-specific 
inputs at several points: 
• Electric field
• Weighting (Ramo) potential
• Trapping constant

• Slow to run, not tenable in HL-LHC conditions

PIX-2023-001

But gives very accurate predictions!
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Simplified Digitization Strategy

Modelling radiation damage to pixel sensors in the ATLAS detector 

• Complex simulation utilizes fluence-specific 
inputs at several points: 
• Electric field
• Weighting (Ramo) potential
• Trapping constant

• Slow to run, not tenable in HL-LHC conditions
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LUT
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• Exploring simplified method using look-up tables (LUTs)  
to parameterize charge propagation vs deposition depth 
• Simple implementation 
• Faster simulation (~3x speedup for Run 3) 
• Also gives accurate predictions! 

• Working with Université Paris Cité (Marco Bomben & 
Keerthi Nakkalil) who created proof-of-concept for ITk-Pixel 
• See recent talk at Pixel2024 & paper describing method

https://doi.org/10.1088/1748-0221/14/06/P06012
https://indico.in2p3.fr/event/32425/contributions/142752/
https://www.mdpi.com/1424-8220/24/12/3976#sec3-sensors-24-03976
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LUT Pipeline

TCAD: Generate detailed sensor field 
maps with custom ITk-Strip Sensor model

AllPix2: Simulate propagation, scan  
across charge-deposition positions

Derive LUTs

LUT closure checks

Import into Athena database 
for use & physics validation

Streamlined simulation infrastructure for ITk-Strip 
to generate look-up table (LUT) models fairly easily in ~1 day

Translate to luminosity estimates (Geant4)



• TCAD simulation of ITk-Strips being tested with various public models 
of radiation-induced trapping (see TCAD talk by Yuzhan Zhao) 

• Custom python integrations to greatly increase flexibility for massive parameter scans 
• Validate models with QC (unirradiated) & QA (irradiated) test-structure data from ITk-Strip sensor community 

• No existing model is consistently performant across fluences, bias voltages, temperatures 
• Pursuing custom ITk Strip model at Carleton, informed by direct measurements of silicon defects  

(see DLTS talk by Christoph Klein)

ITk-Strip TCAD model
TCAD: Generate detailed sensor field 
maps with custom ITk-Strip Sensor model

Unirradiated Electric Field evolution across 5 strips (log scale)

Vbias 10V Vbias 400V
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https://indico.cern.ch/event/1439336/contributions/6242527/
https://indico.cern.ch/event/1334364/contributions/5672062/
https://indico.cern.ch/event/1439336/contributions/6242482/


• TCAD simulation of ITk-Strips being tested with various public models 
of radiation-induced trapping (see TCAD talk by Yuzhan Zhao) 

• Custom python integrations to greatly increase flexibility for massive parameter scans 
• Validate models with QC (unirradiated) & QA (irradiated) test-structure data from ITk-Strip sensor community 

• No existing model is consistently performant across fluences, bias voltages, temperatures 
• Pursuing custom ITk Strip model at Carleton, informed by direct measurements of silicon defects  

(see DLTS talk by Christoph Klein)

ITk-Strip TCAD model
TCAD: Generate detailed sensor field 
maps with custom ITk-Strip Sensor model

Density of hole carriers @ 100V

e20

e17

e17

Irradiated sensor (1.2x1015 neq/cm2)
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e30

e1

e5

Unirradiated sensor

https://indico.cern.ch/event/1439336/contributions/6242527/
https://indico.cern.ch/event/1334364/contributions/5672062/
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ITk-Strip TCAD model
• TCAD simulation of ITk-Strips being tested with various public models 

of radiation-induced trapping (see TCAD talk by Yuzhan Zhao) 
• Custom python integrations to greatly increase flexibility: massive parameter scans & automated plotting 

• Validate models with QC (unirradiated) & QA (irradiated) test-structure data from ITk-Strip sensor community 
• No existing model is consistently performant across fluences, bias voltages, temperatures 
• Pursuing custom ITk Strip model at Carleton, informed by direct measurements of silicon defects  

(see DLTS talk by Christoph Klein)

Fluence after ~3 years

4.6 ⋅ 1014 neq /cm2

Perugia 2022, no surface traps
LHCb model
Perugia 2016
8mm Diodes

Lifetime fluence

15 ⋅ 1014 neq /cm2

Perugia 2022, no surface traps
LHCb model
Perugia 2016
8mm Diodes

Leakage current data & simulated models, normalized at 250 V 12

TCAD: Generate detailed sensor field 
maps with custom ITk-Strip Sensor model

https://indico.cern.ch/event/1439336/contributions/6242527/
https://indico.cern.ch/event/1334364/contributions/5672062/
https://indico.cern.ch/event/1439336/contributions/6242482/
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Charge Propagation Simulations

• AllPix2 strategy to convert TCAD fields into human-readable AllPix2 format,  
derive Weighting Potential from ΔElectrostaticPotential 

• Simulate charge propagation via AllPix2 TransientPropagator 
• Scan across various depths of deposited charge

AllPix2: Simulate propagation, scan  
across charge-deposition positions

8.4 ⋅ 1014 neq /cm2No radiation

electrons electrons

holesholes

Electric Field

Charge propagation from center of sensor without / with radiation

https://gitlab.cern.ch/allpix-squared/allpix-squared/-/merge_requests/949/diffs
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Building Look-up Tables

• Developing unified framework across ITk-Strip & ITk-Pixel for deriving LUTs 
• Fit or interpolate TransientPropagator results vs. charge deposition depth 
• Key distributions are Charge Collection Efficiency & Lorentz Angle 

• New LUTPropagator module implemented in AllPix2 utilizes LUTs  
for fast validation against TransientPropagator

Derive LUTs

LUT closure checks

Charge deposition depth Charge deposition depth

1.1 ⋅ 1015 neq /cm2 1.1 ⋅ 1015 neq /cm2
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ATLAS Software Integration

• TCAD+AllPix2 pipeline repeated for various fluence estimates (in steps of ~5×1014 neq/cm2) 
• ATLAS MC generated in “campaigns” to match single year of data  
→ different fluences for different layers at a specific integrated luminosity 

• Fluences of each layer estimated from Geant4 / Fluka simulations 
• Predicts < 30% variation across length of barrel layers → use average estimate for each layer 
• No endcap implementation yet due to complex geometry & fluence profile 

• Strategy allows digitization model re-calculation as data collected without rerunning TCAD+AllPix2

Import into Athena database 
for use & physics validation

Translate to luminosity estimates (Geant4)

ITK-2016-002

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2016-002/
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Conclusion
• Exploring custom TCAD models of irradiated ITk-Strip sensors, including DLTS-measured lattice defects 
• Automated pipeline builds LUTs from sensor simulations utilizing TCAD & AllPix2 

• Straightforward to run: Template for running TCAD followed by python framework connecting simulations 
• Pre-produce LUT models at various fluences (& voltages) → as HL-LHC progresses translate  

to luminosity-specific estimates on the fly 
• LUTPropagator module & example LUT calculation scripts will be made available via AllPix2


