

Development of in-house plating and hybridisation technologies for pixel detectors

2 nd DRD3 week

02–06 Dec. 2024

Haripriya Bangaru¹ , Giovanni Calderini³ , Dominik Dannheim¹ , Rui De Oliveira¹ , Ahmet Lale1, Mateus Vicente Barreto Pinto⁴ , Janis Viktor Schmidt⁵ , Peter Svihra¹ , Alexander Volker⁵ , Xiao Yang¹

22.11.2024 PIXEL2024 - Nov 22, 2024 – System Integration ¹ **4: Universite de Geneve 5: KIT - Karlsruhe Institute of Technology 1: CERN 2: Hamburg University 3: LPNHE-Paris, Centre National de la Recherche Scientifique**

Introduction

- Development of an in-house module hybridization technique in two main steps:
- 1. Bumping: creation of bumps on the pads of Sensor and ASIC with ENIG plating, gold studs…
- 2. Flip-chip assembly with an anisotropic conductive layer or non-conductive layer between the chips

Advantages:

- Single die processing
- Adaptable to the application
- Low temperature process
- **Maskless**
- In-house (short turnaround time, quick adjustments)

- **ACF: A**nisotropic **C**onductive **F**ilm
- **ACP: A**nisotropic **C**onductive **P**aste
- **NCP**: **N**on-**C**onductive **P**aste

1) Chips bumping with ENIG plating

Introduction

3 main steps for Electroless Nickel Immersion Gold (ENIG) plating:

- 1. Pre-treatment and zincation of the aluminium pad (electroless)
- 2. Electroless Nickel deposition (creation of the bump)
	- Self-catalytic reaction on pad surface, bump height controlled by immersion time
- 3. Immersion Gold
	- Corrosion protection, bondable surface, very thin layer ($<$ 1 μ m)

FIB cross-section of an ENIG bump on an aluminium pad

Sample preparation improvements

Samples preparation:

- Gluing the chip on holder
- Protection of bonding pads

Challenges for the preparation of small-sized chips (handling, gluing, protection of bonding pads)

Development of a microdispenser for small chips gluing

Probe station micromanipulator

Homemade Microdispenser L Which is the res

3D printed adaptor

TimeSpot chip Needle of the syringe

Pre-treatment setup

Pre-treatment: ultrasound + manual movements

Nickel Plating setup and gold plating

Setup for nickel plating Setup for gold plating Setup for gold plating

Temperature probe

R&D

TimeSpot ASIC Functional chip 55µm pitch, 19µm pads

Excellent ENIG results:

- 100% of pads correctly plated (1184 pads)
- No overplating
- Bumps height: 10 µm $(+/-0.5 \mu m)$ 1h deposition

Collaboration with INFN Cagliari (Angelo LOI, Adriano LAI) https://web.infn.it/timespot/

Before plating, optical microscope After 1h plating, optical microscope

After plating, SEM

30.0kV 21.5mm x350 UVD 100Pa 05/16/202

KEK AC-LGAD Sensors and ASICs

Functional chips 100 µm pitch, 40 µm diameter pads

Excellent ENIG results:

- 100% of pads correctly plated (100 pads)
- No overplating
- Bumps height: 8.5 µm $(± 0.6 \mu m)$

Collaboration with KEK (Koji NAKAMURA) and University of Geneva (Lorenzo PAOLOZZI)

Tomoka Imamura, Sayuka Kita, Koji Nakamura, and Kazuhiko Hara, "Development of HPK Capacitive Coupled LGAD (AC-LGAD) detectors", PoS, vol. VERTEX2023, pp. 032, 2024

After plating, SEM

1.3 mm

ColorPix2 Functional chips 70 µm pitch, 40 µm pads

Excellent ENIG results:

- 100% of pads correctly plated (1156 pads)
- No overplating
- Bumps height: 11 µm $(\pm 0.5 \,\text{\mu m})$ 1h deposition

"Color imaging of Xrays", FNSPE CTU in Prague

https://indico.cern.ch/event/829863/co ntributions/5053901/attachments/256 7463/4426692/PIXEL2022_poster.pdf

Optical microscopy after ENIG plating

Conclusion for ENIG plating

Optimised ENIG plating:

- **Reproducibility**
- No skipped pads
- No overplating
- Uniformity

Tested on different configurations:

- High pad density (20 μ m pitch) and small pads (10 μ m)
- Low pad density (1.3 mm pitch) and large pads (90 μ m)
- Successful plating of functional chips TimeSpot, ColorPix, KEK AC-LGAD ASICs and sensors, and LGAD sensors for ALTIROC3

2) Flip-chip hybridisation

Hybridisation with flip-chip

Bonding done at Geneva University using semi-automatic flip-chip bonder

- Precise temperature, pressure and alignment control
- Heating up to 400 °C and force applied up to 100 kgf
- Available for bonding with **A**nisotropic **C**onductive and **N**on-conductive **F**ilm/**P**aste **ACF/ACP** or **NCF/NCP**

ACF bonding has two steps: lamination and bonding

- ACF lamination at 80° C, \approx 5 kg/cm2
- Bonding at 150° C, \approx 50 kg/cm2

ACP bonding has three steps:

- Mixing the micro-particles with the liquid adhesive
- Dispensing the mix on the bottom chip
- Flip-chip bonding

Top chip

Bottom chip

ACF

Characterisation of daisy-chain test structures

Hybridisation and characterisation of functional chips

TimeSpot:

One hybrid realised with not optimised ENIG plating (first plating, before optimisation)

- 32x32 pixels, 55 µm pitch
- Si 3D trench sensor
	- ACF 18 μm thick
	- >85% connection yield *(Characterised by Angelo Loi INFN Cagliari)*

3) Hybridisation with gold studs

Gold-stud hybridisation of ALTIROC3/A and LGAD sensors

- Using ALTIROC3/A ASICs and LGAD sensors from ATLAS High-Granularity Timing Detector (HGTD) to develop new in-house bonding process for sensor and ASIC qualification
- Single and stacked double gold studs used for the connections between the chips, epoxy underfill for bonding
- Used for radiation-hardness qualification of LGAD sensors
- Low temperature process (60°C) to avoid uncontrolled annealing

Gold studs are deposited one by one https://www.youtube.com/watch?v=ICRDBpmev4o&t=42s&ab_channel=TP **Wirebonder**

Gold stud Stacked Gold studs

Preferred this solution to increase the gap between ASIC and sensor from 20 µm to 35 µm and thereby decrease coupling between them

Test-beam occupancy map of ALTIROC with double gold studs + irradiated LGAD sensor

- High connection yield, reproducibility, low temperature process
- Only for large pitch (>100µm), large pads (>80µm) chips

• **Optimised ENIG plating tested on many different configurations**

• Functional chips, with different pad size, pitch, chip size…

• **Different approaches studied for hybridisation**

- ACF, ACP, NCP, Gold Studs
- **Successful flipchip bonding of different chips with different sizes**
	- Optimisation of bonding parameters (pressure, time, temperature)
- **Reliability tests in climate chamber (ongoing)**
	- Good results for both the ACF and the ACP

ENIG plating results on test structures

Timepix3 type daisy-chain test structures, 22x22 µm pads and 55 µm pitch

Timepix 3 type daisy-chain device

Excellent ENIG results:

- Good bump homogeneity
- >99% of 65536 pads correctly plated
- Bumps height: $10 \mu m (\pm 0.5 \mu m)$ 55min deposition

Small pitch/small pads test structures, 20 um pitch, 10x8 µm rectangular pad size (High connection density)

Small pitch/small pads test structures test structures (3.2x3.2mm)

Excellent ENIG results:

- Good bump homogeneity
- >99% of 16384 pads correctly plated
- Bumps height: 4.5 µm $(\pm 0.2 \,\text{\mu m})$ 25min deposition

ATLAS HGTD LGAD sensors Functional chips 1.3mm pitch, 90 µm diameter pads

Good ENIG results:

- Homogeneity of bumps achieved with no overplating
- 100% of pads correctly plated (225 pads)
- Bumps height: 8.5 µm $(\pm 0.7 \,\text{\mu m})$ (1h) deposition)

Optical microscope, 62° tilt

Optical profilometry after ENIG plating

500

 \overline{a}

1000

um

 500

DRD3 week - Dec 3, 2024 – WG7 Interconnect – Ahmet LALE 21

1789

æ

2000

2254

1500

Test dedicated daisy-chain chips on glass wafer

Daisy chain devices produced at FBK

Designed to validate interconnect yield, electrical resistance, thermo-mechanical stress

- 6" glass wafers, 625 um thick
- Varying Bonding area, pad size and pitch, matching different target applications

https://zenodo.org/records/7310324

Challenges of initial platings

Deposition reproducibility on different

Characterisation of ENIG plating

Process flow documentation

1. Given Data

- Total number of samples: $65,536$.
- Samples are grouped into 72 groups of 28 samples each.
- Out of these 72 groups:
	- \cdot 29 groups are good.
	- \cdot 43 groups are bad.

3. Observed Proportion of Good Groups

From the test results, 29 out of 72 groups are good. Therefore, the observed proportion of good groups is:

$$
\hat{P}(\text{group good}) = \frac{29}{72} \approx 0.4028
$$

Since the observed proportion of good groups is an estimate of $P(\text{group good})$, we have:

 $P(\text{group good}) = p^{28} = \hat{P}(\text{group good})$

Substituting the observed proportion:

 $p^{28}=\frac{29}{72}$

2. Probability That a Group is Good

A group of 28 samples is considered good only if all 28 samples in that group are good. Let p represent the probability that a single sample is good. The probability that a group of 28 samples is good is then given by:

 $P(\text{group good}) = p^{28}$

Conversely, the probability that a group is bad is:

 $P(\text{group bad}) = 1 - p^{28}$


```
To find p, take the 28^{\text{th}} root of \frac{29}{72}:
```
 $p=\left(\frac{29}{72}\right)^{\frac{1}{28}}$

Computing this:

 $p\approx 0.968$

Thus, the probability that a single sample is good is approximately 96.8% .

5. Estimating the Total Number of Good Samples

To estimate the total number of good samples among the $65,536$ samples, multiply p by the total number of samples:

$$
N_{\rm good} = p \times 65,536
$$

Substituting $p \approx 0.968$:

 $N_{\rm good} \approx 0.968 \times 65,536 \approx 63,442$

Final Results:

- 1. Probability that a single sample is good: $p \approx 0.968$ (96.8%).
- 2. Estimated number of good samples: $N_{\rm good} \approx 63,442.$

This means that approximately $63,442$ samples out of $65,536$ are good, based on the group test results.

Setup:

Setup

- DUT: Timespot-1 Hybrid on Tspot-1 board
- Clock generator
- FPGA and dedicated mezzanine
- IIC interface

Device exposed to Sr90 source

DRD3 week - Dec 3, 2024 – WG7 Interconnect – Ahmet LALE

Approach

Mutiple acquisition runs performed

Method:

- Distribution of the Time Over Threshold analysed
	- TOT proportional to released charge
	- Set a cut below 3 ns which is considered mostly noise contribution
- Hit map generated after setting the threshold on the TOT

15

25

Channel X [#N]

Count

Time over threshold

Bonding efficiency

Due to intrinsic design flaws of the hybrid it's not possible to determine exactly the bonding efficiency

TCT has been considered but the already very thick support wafer still attached on the active volume absorbs most of the NIR radiation

Bonding efficiency estimated by applying an increasing threshold on the counted events pe **channel**

- Above 5 counts per channel, trend is more constant.
	- We conclude that efficiency estimation is at the lowest 85.5 %

Bonding Efficiency based on counts per channel

