

2nd DRD3 Workshop CERN, 2-6 December 2024

Fluence Profiling at JSI TRIGA Reactor Irradiation Facility

V. Sola, M. Ferrero, O.A. Marti Villareal (INFN, University of Oriental Piedmont, University of Turin) <u>I. Mandić</u>, K. Ambrožič, G. Kramberger, L. Snoj (JSI, Ljubljana)

Jožef Stefan Institute, Ljubljana, Slovenia

Introduction

- significant differences of gain degradation between LGADS irradiated together in the Ljubljana reactor were observed
- > check if differences were caused by non-uniform neutron flux within the irradiation container
 - → measurements presented in this talk were made in year 2000
 - preliminary results were shown at the 36th RD50 workshop (online) in June 2020 by V. Sola: <u>https://indico.cern.ch/event/918298/contributions/3880586/attachments/2049824/3435546/vs-JSIprofile-36thRD50.pdf</u>
- here we present new data analysis and new simulations
- work was published in V. Sola et al., NIMA 1063 (2024) 169258 (<u>https://doi.org/10.1016/j.nima.2024.169258</u>)
- information about neutron flux uniformity important for DRD3 community because many samples were (and hopefully will be) irradiated in the reactor in Ljubljana

The Idea

- Use 5x5 pad array LGAD sensor to map fluence dispersion [pad size 1.3x1.3 mm² - W1 FBK UFSD3 production]
- ➤ Measure V_{GL} of each pad when the sensor is NEW and AFTER Irradiation
- \succ V_{GL} proportional to acceptor concentration in the gain layer: V_{GL} $\propto N_A$
- > $N_A(\Phi) = N_A(0) \cdot e^{-c \cdot \Phi} \rightarrow V_{GL}$ exponential dependence on fluence
- > Measure Ratio = $\frac{V_{GL}(\Phi)}{V_{GL}(0)} = e^{-c\Phi_{eq}}$, to eliminate variations of $V_{GL}(0)$
- > Parameter $c = 3.85 \times 10^{-16} cm^2$ known for these devices
 - See: M. Ferrero, R. Arcidiacono, M. Mandurrino, V. Sola, N. Cartiglia, An Introduction to Ultra-Fast Silicon Detectors, CRC Press, 2021, <u>http://dx.doi.org/10.1201/9781003131946</u>
- > Φ_{eq} can be estimated from the change of V_{GL} > pad size 1.3x1.3 mm² \rightarrow good spatial resolution

The Idea

 \succ V_{GL} defined as voltage at C = 150 pF

> V_{GL} can be measured with a precision of ± 0.1V

Irradiation Strategy - The Assembly

Irradiation Strategy - Sensor Placement

> 8 devices irradiated: 4 at Up position and 4 at Down

Irradiation Strategy - Support Structure

Container gets into the core through a tube and it is in vertical position during irradiation, parallel with fuel rods **Our samples were irradiated in channel F19 at full reactor power for 926 seconds, target fluence:** $\Phi_{eq} = 1.5e15 n_{eq}/cm^2$ Rotation of the irradiation container around the axis of the cylinder is **not controlled** \rightarrow We don't know the rotation angle during irradiation

More detail of the reactor in e.g.: [L. Snoj et al., doi: 10.1016/j.apradiso.2011.11.042]

Photo of reactor core when reactor is on power (photo taken through 5 m of water from the platform)

2ND DRD3 WORKSHOP - CERN 3.12.2024

Horizontal Trend – Up sensors

Error on each data point = 0.9%

Horizontal Trend – Down sensors

0,54

2

3

4

1

--- Row3

--- Row4

•••• Row5

Column #

5

Vertical Trend

Average V_{GL} per Sensor Converted into Fluence

 $= e^{-3,85E-16\cdot\Phi}$ Using parametrisation from [M.Ferrero et al, doi:10.1016/j.nima.2018.11.121]

- > Average V_{GL} ratio over 25 pixels of each sensor
- Fluences within -11% to +13% from the average value

 $N(\Phi)$

➤ Consistent with △Φ ~ ± 10%
 usually quoted for reactor fluence accuracy

Average V_{GL} per Sensor Converted into Fluence

 $= e^{-3,85E-16\cdot\Phi}$ Using parametrisation from [M.Ferrero et al, doi:10.1016/j.nima.2018.11.121]

- > Average V_{GL} ratio over 25 pixels of each sensor
- Fluences within -11% to +13%from the average value
- ➤ Consistent with △Φ ~ ± 10%
 usually quoted for reactor fluence accuracy

 \rightarrow We were lucky to probe the maximal fluence variation within the container volume

Neutron Flux Simulation in F19 Volume

Calculations are made using Monte Carlo MCNP v 6.1 software and ENDF/B-VII.0 nuclear data libraries

For more details see [K. Ambrožič et al., doi: 10.1016/j.apradiso.2017.09.022]

- Calculated flux of fast neutrons (E_n > 100 keV) in the F19 irradiation channel
- Irradiation assembly (sensors, support structure, container) included in the simulation
- Calculations made on a mesh of 2x2x2 mm³
- Two orientations of sensors in the channel simulated
- ➢ Flux calculated with and without sample in the tube
 → insertion of the sample changes the flux by ~ 10%

Reactor model in the simulation

Assemblies in the irradiation tube F19 → two orientations

Flux Simulation in F19 Volume

- > flux of fast neutrons in F19 calculated for two orientations of irradiation container
- > flux increases towards the centre of the reactor core (because of the proximity of fuel element)
- > variation of flux in z (height) direction within the container smaller

Compare measurements with simulation

- > better agreement of measured values with simulation in perpendicular orientation
- > confirms that samples were close to perpendicular orientation during irradiation

Better agreement!

Simulation in perpendicular orientation

Oriented perpendicularly wrt. reactor core centre

Top sensor mid-plane: XY

F19 centerline cutout: YZ

Comparison within sensor

- agreement with simulation also for individual pixels within sensor
- distance between points only 1.3 mm!
- ➤ maximal fluence deviation from the average measured by individual pixels -14.7% to +15.4%
- > LGAD arrays are excellent tool for monitoring of neutron flux with high spatial resolution!

Summary

- LGAD arrays demonstrated to be very a precise tool to map fluence profile at the JSI TRIGA neutron reactor irradiation facility
- The variation of the fluence delivered to the sample is larger in radial than in azimuthal or vertical directions within the irradiation channel F19
- > Fluences per sensor inside irradiation container within $\Delta \Phi \sim \pm 10\%$
- > The maximal difference between individual pixels $^{+15.4\%}_{-14.7\%}$
- Monte Carlo based flux calculation confirms data observation
- ➤ For more detail please read:

V. Sola et al. *Fluence profiling at JSI TRIGA reactor irradiation facility*, NIMA 1063 (2024) 169258 (<u>https://doi.org/10.1016/j.nima.2024.169258</u>)

ACKNOWLEDGEMENTS

We kindly acknowledge financial support from:

- ▷ INFN CSN5 through the eXFlu research project and the FRIDA call
- ▷ Fondazione Compagnia di San Paolo
- ▷ Slovenian Research Agency (research core funding no. P1- 0135 and project no. J1-6199).

Thanks go also to:

- Gian Franco Dalla Betta, Lucio Pancheri, Maurizio Boscardin, Giovanni Paternoster and the FBK SD group for designing and producing the tested sensors
- Nicolò Cartiglia, Roberta Arcidiacono and the whole UFSD Torino group for providing the LGAD sensors and for the continuous and fruitful discussion and support
- RD50, CERN for providing suggestions and discussion that triggered the presented study
 the JSI TRIGA reactor group for irradiation