Constellation Autonomous Control and Data Acquisition System for Dynamic Experimental Setups

Simon Spannagel, DESY for the EDDA Collaboration

2nd DRD3 Week, CERN 2024-12-03

Outline

The Process The Framework The Project

2 S. Spannagel - Constellation - 2nd DRD3 Week

What do we expect from a "flexible DAQ system"?

- Useful to control single laboratory setup (e.g. radioactive source measurement)
- **Possibility to integrate multiple setups** (Detector DAQ, TCT laser control)
- Lab supervision mode

 (multiple setups monitored but control not ceded)
- Synchronized operations

(test beam environment, coordinated start/stop, central control)

 Scalability for small experiments (many detectors, multiple data endpoints & monitors)

The Process User Stories Hackathons Protocols

4 S. Spannagel - Constellation - 2nd DRD3 Week

The User Stories

Idea: collect stories of how users do or *would like to* use their laboratory setups and derive requirements for the software from this → **user-centered development**

Example: "Slow control and conditions logging"

I have a detector (or source) mounted on a motorized stage that I want to move for beam scans. I want to set the position as part of run control and log it [...] in a run conditions database. I also want to log environmental data such as temperature, humidity, pressure, ... there. While all this could be done by a shifter, that is error prone and requires manual intervention [...].

Derived Requirements

- Possibility to store meta data in database
- Allow satellites to provide metadata for storage (data stream, statistics)



The Hackathons

Idea: sit together and code first drafts, discuss concepts, re-iterate thoughts → **collaboration-driven development**

Organized two hackathons to far:

- 1st in Lund, Nov. 2023 focus on protocols, first prototypes
- 2nd in Hamburg, May 2024 focus on user interface, docs

The Protocols

Idea: Instead of coding ahead, write RFC-style protocol documents to precisely define communication → **design-driven development**

This allows parallel, independent implementations in different languages

Constellation Host Identification and Reconnaissance Protocol

Status: draft

• Editor: The Constellation authors

The Constellation Host Identification and Reconnaissance Protocol (CHIRP) defines how different hosts announce their services and connect to each other on the network.

Preamble

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

The Framework

Satellites Controllers Listeners

Introducing Constellation

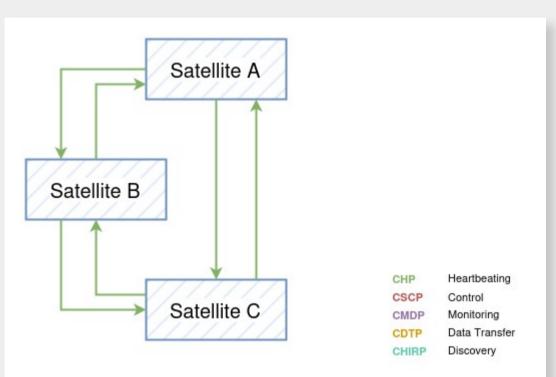
- Project goals:
 - **Easy** to use, easy & fast to integrate new systems
 - Stable operation, reliable error handling
 - Flexible and applicable for many use cases
- Participants are called **satellites**
 - Operation is governed by a **finite state machine**
 - Satellites can operate **autonomously** without active user interface
- Independent implementations in Python & C++
- Solid foundation: well-defined communication protocols between components

Communication Protocols

- All interaction is based on five protocols:
 - **CHIRP** (Constellation Host Identification and Reconnaissance Protocol) Automatic network discovery of satellites/services
 - **CHP** (Constellation Heartbeat Protocol) Exchange of "I'm alive" signals with FSM state, variable sender-defined intervals
 - **CSCP** (Constellation Satellite Control Protocol) Controller protocol which sends transition & other commands
 - **CMDP** (Constellation Monitoring Distribution Protocol) Monitoring and logging data broadcasting, only subscribed topics on the wire
 - **CDTP** (Constellation Data Transmission Protocol) Data transmission with extra features such as sequences, begin- & end-of-run

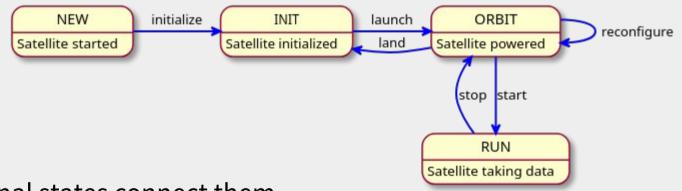
System Architecture – Network Discovery

- At startup, satellites emit CHIRP beacons
 - OFFER for each provided service
 - REQUEST for remote services
- Other satellites within the same group/domain/Constellation are discovered


	Satellite A		
Satellite E			
	Satellite C	CHP CSCP CMDP	Heartbeating Control Monitoring
		CDTP CHIRP	Data Transfer Discovery

System Architecture – Heartbeating

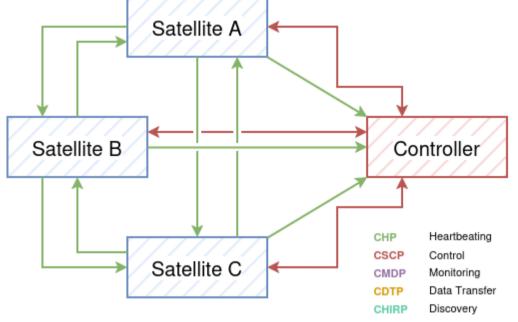
- Satellites start exchanging heartbeat messages
- Message contains
 - Current FSM state
 - Expected interval to next message
- Heartbeating allows
 - autonomous tracking of Constellation state
 - Reaction even in case of netsplit / connection loss



The Satellite Finite State Machine

- Central component of the satellite, governing its operation
- Instruments always in a well-defined state
- Satellites know four steady states:

 Transitional states connect them commands (via CSCP) initiate transition



Uses network discovery to find satellites

- Uses heartbeats to get state update information
- Commands sent to individual or • all satellites via CSCP protocol
 - Classical server-client (requestresponse) communication
 - Response indicates success / errors
 - Custom per-satellite commands possible

System Architecture – Control A controller joins the network

	Constellation	Satellites	State	Run Ident	fier		Run Dur	ation
D	h2m	8	Running	run_28			00:11:	06
Configu	iration						Control	
Config	guration: /home/tel	euser/constellatior	n/configs/h2m.toml			Select	Initialize	Shutdown
Log:					INFO	▼ Log	Launch	Land
Run Id	dentifier: run				Sequence	: 28 🏮	Start	Stop

Satellite connections

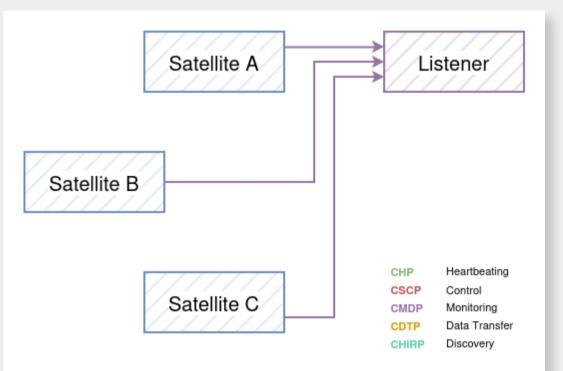
Туре	Name	State	Connection	Last response	Last message	Heartbeat	t Lives
Adenium	Telescope	Running	tcp://192.168.22.1:40693	SUCCESS	Transition start is being initiated	5000ms	3
AidaTLU	TLU	Running	tcp://192.168.22.1:45079	SUCCESS	Transition start is being initiated	5000ms	3
Caribou	H2M	Running	tcp://192.168.22.111:33779	SUCCESS	Transition start is being initiated	5000ms	3
EudaqNativeWriter	TLU	Running	tcp://192.168.22.1:39419	SUCCESS	Transition start is being initiated	5000ms	3
EudaqNativeWriter	H2M	Running	tcp://192.168.22.1:34091	SUCCESS	Transition start is being initiated	5000ms	3
EudaqNativeWriter	Adenium	Running	tcp://192.168.22.1:36795	SUCCESS	Transition start is being initiated	5000ms	3
Influx	Grafana	Running	tcp://192.168.22.3:34303	SUCCESS	transitioning	1100ms	3
Keithley	Bias	Running	tcp://192.168.22.1:37579	SUCCESS	transitioning	1100ms	3

Controller GUI Mission Control

📡 v0.1 (Crux) 🛰 4 👷 TRANSITIONING ipython

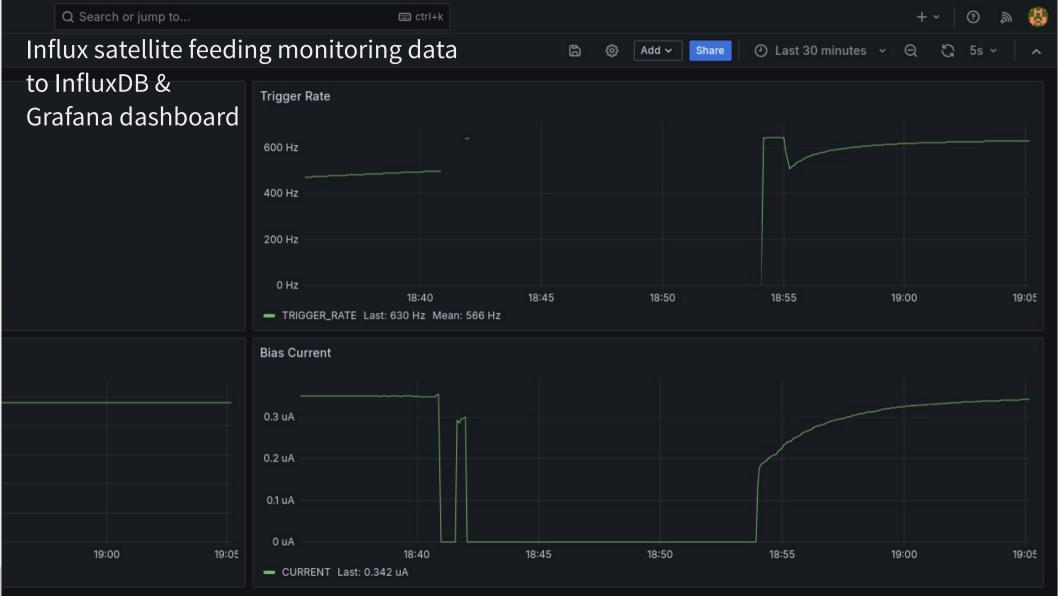
📡 v0.1 (Crux) 🛰 4 👷 TRANSITIONING ipython

cnstln1 > ctrl.states
{'Sputnik.Aether': <SatelliteState.ORBIT: 48>,
 'Sputnik.Agamemnon': <SatelliteState.ORBIT: 48>,
 'Sputnik.Achlys': <SatelliteState.ORBIT: 48>,
 'Sputnik.Achilleus': <SatelliteState.ORBIT: 48>}


📡 v0.1 (Crux) 🛰 4 🛰 ORBIT ipython

IPython-based interactive & scriptable CLI controller with tab completion

cnstln1 > constellation.l	aunch()			
failure()	<pre>get_run_id()</pre>	get_type()	interrupt()	
<pre>get_commands()</pre>	<pre>get_satellite()</pre>	<pre>get_version()</pre>	land()	
<pre>get_config()</pre>	<pre>get_state()</pre>	group	launch()	>
<pre>get_name()</pre>	get_status()	initialize()	reconfigure()	


System Architecture – Monitoring

- Satellites can expose metrics and log messages through monitoring protocol
 - Publish-subscribe model
 - Only information with active subscribers is actually transmitted
- Listeners are passive Constellation components which only consume CMDP

Constellation Observatory

List Filters			Constellation	Satellites
Level TRACE - All -	▼ Topic - All - ▼	Message	edda	0
Time A Sender Lev		Message	Subscriptions	
	BUG SATELLITE	Internal configuration: 0 settings	Global Level	DEBUG
2024-09-13 13:37:01 Sputnik.test3 INF		Calling initializing function of satellite	Global Level	DEBUG
2024-09-13 13:37:01 Sputnik.test INF		Configuration: 0 settings		
	ATUS FSM ATUS FSM	New state: initializing New state: initializing		
2024-09-13 13:37:01 Sputnik.test3 INF		Reacting to transition initialize		
2024-09-13 13:37:01 Sputnik.test INF		Calling initializing function of satellite		
	BUG CSCP	Received CSCP message of type REQUEST with verb "initialize" and a		
2024-09-1313:37:01 Sputnik.test INF		Reacting to transition initialize		
	BUG CSCP	Received CSCP message of type REQUEST with verb "initialize" and a		
2024-09-13 13:37:04 Sputnik.test3 STA	ATUS FSM	New state: ORBIT		
2024-09-1313:37:04 Sputnik.test3 INF		Reacting to transition launched		
	ATUS FSM	New state: ORBIT		
2024-09-1313:37:04 Sputnik.test3 INF		Calling launching function of satellite		
2024-09-13 13:37:04 Sputnik.test INF		Reacting to transition launched		
	ATUS FSM	New state: launching		
2024-09-1313:37:04 Sputnik.test INF		Calling launching function of satellite		
2024-09-13 13:37:04 Sputnik.test3 INF		Reacting to transition launch		
	ATUS FSM BUG CSCP	New state: launching Received CSCP message of type REQUEST with verb "launch" from B		
2024-09-13 13:37:04 Sputnik.test INF		Reacting to transition launch		
	BUG CSCP	Received CSCP message of type REQUEST with verb "launch" from B		
	ARNING FSM	Transition launch not allowed from ORBIT state		
2024-09-13 13:37:05 Sputnik.test3 INF		Reacting to transition launch	Logain	
	ARNING FSM	Transition launch not allowed from ORBIT state	LUggir	Ig GOI
	BUG CSCP	Received CSCP message of type REQUEST with verb "launch" from B		-
2024-09-13 13:37:05 Sputnik.test INF	FO FSM	Reacting to transition launch	Obser	ng GUI vatory
2024-09-1313:37:05 Sputnik.test DEI	BUG CSCP	Received CSCP message of type REQUEST with verb "launch" from B \blacksquare		,, <u>,</u>

Excursus: MicroSat – A Microcontroller Satellite

- Proof-of-principle:
 - Implement a Constellation Satellite on a microcontroller
 - Had some 5 EUR, low power **ESP8266** available
- Despite limitations of microcontroller (single thread, limited resources) fully functional satellite
- Possible applications:
 - Controlling switches / relays
 - Providing temperature & humidity data

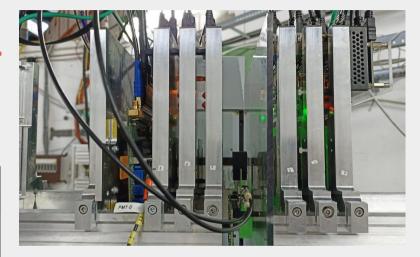
"...well-defined protocols means independence from implementation"

The Project

Application Example

Continuous Integration

Documentation



A Real World Example – H2M Testbeam at DESY-II

- Synchronously controlling
 - Caribou DAQ with H2M MAPS detector Satellite running on Xilinx UltraScale SoC
 - Keithley 2410 source meter
 - Adenium ALPIDE telescope
 - AIDA2020 TLU
- EudaqNativeWriter satellite to store data in EUDAQ2 file format for analysis with existing tools

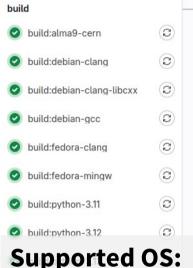
Туре	 Name
Adenium	Telescope
AidaTLU	TLU
Caribou	H2M
EudaqNativeWrit	er TLU
EudaqNativeWrit	er H2M
EudaqNativeWrit	er Adenium
Influx	Grafana
Keithley	Bias

Also listen to H2M talk by Finn King, Thu afternoon!

Other users (or soon-to-be):

- electronCT Testbeam @ MAMI / Mainz
- MADMAX Experiment @ Uni Hamburg
- HGTD Alvin Sr90 Setup @ CERN
- ATLAS ITk Module Testing @ Lund Uni
- Collaboration w/ TrackLab (Talk by Petr Manek, now!)

...



Continuous Integration

test

Test coverage: ~ 90%

C test:alma9-cern C test:debian-clang C test:debian-clang-libcxx 0 test:debian-acc C test:fedora-clang 0 test:python-3.11 0 test:pvthon-3.12 C test:python-3.13 0 test:ubuntu-22.04 0 test:ubuntu-24.04

lint		format	
lint:clang-tidy	3	ormat:black	0
lint:coverage-cpp	0	format:clang-format	0
lint:coverage-py	0	format:codespell	0
lint:mypy	0	o format:flake8	0
		format:reuse	0

Static code analysis:

- Coverity, Clang Tidy
- Clang Scan-Build
- MyPy

Documentation

Form & style:

- Code formatting
- Spelling / typos
- Licensing checks

- Debian Testing Fedora 40
- Ubuntu 22.04

• Alma Linux 9

•

•

• Ubuntu 24.04

Constellation

Autonomous Control and Data Acquisition System

Constellation is a control and data acquisition system for small-scale experiments and experimental setup with volatile and dynamic constituents such as testbeam environments or laboratory test stands.

Get Started	Concepts
See API Reference _	<u>.</u>

V Autonomous

Constellation operates without a central server, satellites exchange heartbeats to keep in touch.

Fast Integration

The finite state machine and satellite interface are designed for fast and easy integration of devices.

(1) Flexible

Automatic network discovery of satellites make it easy to add and remove satellites on the fly.

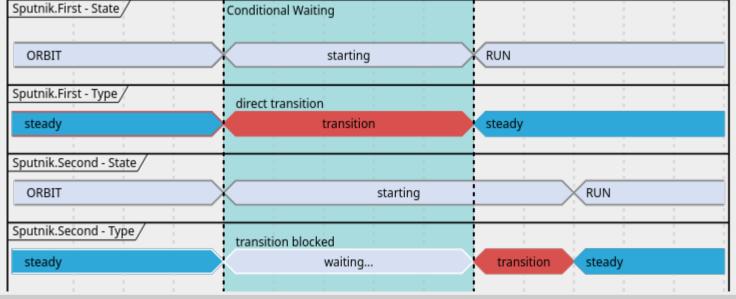
Robust

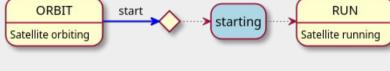
Constellation is based on widely adopted networking libraries such as <u>ZMQ</u> and <u>MsgPack</u>.

Website & Documentation https://constellation.pages.desy.de

Summary & Outlook

- Implementing a new control & DAQ system bottom-up
 Centered system design around user stories & protocol definitions
- Most core concepts and features are implemented
 - Protocol implementations in C++ & Python
 - Graphical user interfaces for controlling & logging
 - Monitoring via Grafana, data storage in HDF5 files
- First preview *Constellation 0.1 Crux* released, second to follow ~ this week
- Get involved as developer, as adopter, as user join us:
 - EDDA mailing list at lists.desy.de/sympa/info/edda
 - Website with documentation at constellation.pages.desy.de
 - CERN Mattermost team at mattermost.web.cern.ch/constellation
 - Code is open source, EUPL-licensed and available at gitlab.desy.de/constellation

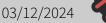




Excursus: Autonomous Transitions Orchestration

- Satellites can operate autonomously, no controller has to be active
- Satellites can control certain processes themselves without active intervention
- Example: specific order of start/stop operation:

03/12/2024


A Standard Interface for Satellites

• Converged on a standard set of commands any satellite has to understand

Each satellite must be able to understand and answer to the following commands, and it must accept or provide the corresponding payloads. Verbs and commands are always transmitted as native strings, payloads are always encoded as MsgPack objects.

- Documented as Satellite Implementation Guidelines
- Forms the basis for controller classes and UIs

Command	payload	verb reply	payload reply
get_name	-	Name of the Satellite	-
get_version	-	Constellation version identifier string	-
get_commands	-	Acknowledgement	List of commands as MsgPack map/dictionary with command names as keys and description as values
get_state	-	Current state (as string)	-
get_status	-	Current status	2
get_config	-	Acknowledgement	Satellite configuration as flat MsgPack map/dictionary
get_run_id	-	Current or last run identifier (as string)	-
initialize	Satellite configuration as flat MsgPack map/ dictionary	Acknowledgement	-
launch	-	Acknowledgement	-
land	-	Acknowledgement	-
reconfigure	Partial configuration as flat MsgPack map/ dictionary	Acknowledgement	-
start	Run identifier as MsgPack string	Acknowledgement	
stop		Acknowledgement	-
shutdown	-	Acknowledgement	-

