

EP

R&D

Caribou: Overview of recent updates, new features and future plans

Tomas Vanat, Mathieu Benoit, Eric Buschmann, Hucheng Chen, Dominik Dannheim, Thomas Koffas, Younes Otarid, Ryan St Jean, Simon Spannagel, Shaochun Tang 2nd DRD3 week on Solid State Detectors R&D – 2-6 December 2024

System Overview

An open source common platform

Open source hardware, firmware and software for laboratory and beam tests

Developed by a collective effort of hardware, firmware and software developers

A modular system architecture

• System-on-Chip (SoC) board

- ie: Xilinx ZC706 evaluation board
- Embedded CPU runs DAQ and control software
- FPGA runs custom firmware for detector control and readout

• Control and Readout (CaR) interface board

- Physical interface from SoC to detector
- CaR SoC connection extendable via FMC cable

Detector (chip) carrier board –

- Custom low-cost PCB
- Designed by users

For your custom detector chip board

• Detector-specific

- Physical hardware hosting the detector
- Only provide passives and detector-specific components
- Multiple detectors already integrated and tested:

Peary: Software Framework

News and Updates

CaR board v1.5 release

- Response to high CaR board demands
- Respin of CaR board v1.4
 - Replacement of obsolete components
 - Small improvements and bug fixes
- Production and distribution of 31 boards
 - RD50 + DRD3 common funds project (pending validation)
 - Production granted to Safiral, Czechia
 - Distributed in August 2024 to 10 institutes

CaR board v1.5 release

- Response to high CaR board demands
- Already received requests for ~7 additional v1.5 boards Respin Repla **Currently preparing a second combined purchase order** Smal **RD50+DRD3 common-funds project proposal** Producti will be appended accordingly RD50 Produ In case you would like to take part, please contact: Distri younes.otarid@cern.ch and sina dominik.dannheim@cern.ch

Peta-Caribou

- Builder for Petalinux opreating system image
- New simplified workflow for boot image generation
- Discontinuing support of legacy Meta-Caribou workflow
- Streamlined support of different evaluation boards

Boreal: Unified FPGA firmware

Top Module

Project website and documentation

Project website

- Documentation
- Mattermost channel
- Publications
- Forum
- ...

Automatic documentation builds and website deployments

Future Plans

Support of UltraScale+ MPSoC boards

Xilinx <u>ZCU102</u> evaluation board

Enclustra Mercury+ ST1

Xilinx ZC706 evaluation board

Supported Not available anymore

Ongoing work to support Intermediate step towards Caribou v2.0

Caribou v2.0

Caribou v2.0

- Based on commercial System-on-Module (SoM)
 - Merge CaR board and ZYNQ board into a single board
 - Optimize system cost, increase flexibility and performance
- <u>Mercury+ XU1</u> System-on-Chip
 - ZYNQ Ultrascale+ MPSoC
 - More resources and processing power
- CaR board hardware specifications and design in progress
- Software/Firmware development phase
 - Using UltraScale+ MPSoC boards
 - 1) Xilinx <u>ZCU102</u>
 - 2) <u>Mercury+ ST1</u>

Caribou v2.0 Test Board

- Next step towards Caribou 2
 - Smaller test board without SoM and fewer channels
 - Controlled via USB
- Goals:
 - Test and characterize analog circuits and power supplies
 - Evaluate different design options
- Improvements include:
 - Increased range for power supplies and current sources
 - Negative supply voltages
 - Improved overcurrent protection
- Schematic design is being reviewed and prepared for layout
- Will be scaled up to full design with all channels and SoM after testing

ALPIDE Telescope (Work in Progress)

- An AIDAInnova project to replace outdated Mimosa telescopes
- Using 6 ALPIDE planes with full-speed readout (1.2Gb/s per chip)
- Using Peary SW

ALPIDE Telescope (Work in Progress)

- An AIDAInnova project to replace outdated Mimosa telescopes
- Using 6 ALPIDE planes with full-speed readout (1.2Gb/s per chip)
- Using Peary SW

Telescope Board

- A versatile FMC hub ("fan-out board") for 6 telescope planes
 - Does not have to be used with ALPIDE only
- Control implemented in Peary on the same level as CaR board
- Containing:
 - Interface for AIDA TLU
 - Clock generator/jitter cleaner (Si5344)
 - Clock fanout
 - Level shifters for FMC signals
 - (M)LVDS buffers
 - I²C switch and I²C long cable drivers
- (mis)Using DisplayPort connectors to connect telescope planes
- 1 high-speed data in pair, 1 clock out pair,
 - 1 slow-control out pair, I²C,
 - 1 GP-input and 1 GPIO, Power (12V)

Telescope plane

- Chips are delivered on carrier boards
- Interface board is directly attached to carrier board via a PCI-e style edge connector
 - Implements detector-specific peripherals
 - 2×1.5 V-2V, 500mA power supply with monitoring and fuse function
 - 12-bit ADC (temperature and analog outputs monitoring)
 - EEPROM
 - GPIOs over I2C (reset and control signals)
 - Option for external bias voltage and power supply
 - Connects to FMC hub via a DisplayPort Cable

Other Peary/Caribou WiP and plans

- Driven by specific requests for current/foreseen project
- Peary modifications:
 - Operating multiple devices of the same type (*done*)
 - Variable width of AXI registers (mostly done)
 - Reorganizing code structure to ease implementing of new HW architectures (as needed)
 - Multithreading (*far future*)
- Implementing DMA for faster data transfer (near future)
- 10G Ethernet (far future)

Summary

- Caribou is:
 - A versatile DAQ system for silicon pixel detectors
 - Open source, standalone
 - Proved excellent operation on many detector prototypes
 - Modular architecture allows to replace part of the system for specic purposes, e.g. hardware for ALPIDE telescope
 - Large community of users in DRD3
 - Ongoing upgrade phase with many improvements to come

Thank you

Contact

CERN Younes Otarid EP R&D younes.otarid@cern.ch

home.cern

CaR board v1.4 - Overview

Feature	Description
Adjustable Power Supplies	8 units, 0.8 – 3.6 V, 3 A
Adjustable Voltage References	32 units, 0 – 4 V
Adjustable Current References	8 units, 0 – 1 mA
Voltage Inputs to Slow ADC	8 channels, 50 kSPS, 12-bit, 0 – 4 V
Analog Inputs to Fast ADC	16 channels, 65 MSPS, 14-bit, 0 – 1 V
Programmable Injection Pulsers	4 units
Full-Duplex High-Speed GTx Links	8 links, <12 Gbps
LVDS Links	17 bidirectional links
Input/Output Links	10 output links, 14 input links, 0.8 – 3.6 V
Programmable Clock Generator	Included
External TLU Clock Reference	Included
External High-Voltage (HV) Input	Included
FEAST Module Compatibility	Supported
FMC Interface to FPGA	Included
SEARAY Interface to Detector Chip	320-pin connector

Production and distribution coordinated by WP-1.4

Application examples

- Support for various readout schemes
 - Digital interface via GTx or LVDS
 - Analogue waveforms (ADC or oscilloscope)
- Integration in beam telescope setups
 - Timepix3/SPIDR, Mimosa/EUDAQ, ALPIDE

(optional)

MIMOSA @ DESY

TDC

cable

delay

Telescope integration

CLICdp Timepix3 @

Caribou system architecture

