

Evaluation of OpenPDKs and OpenSource Design Tools for DMAPS

A WP1 proposal? Or rather a WG1 proposal/common project

Manuel Handta, Marco Huebner, Dennis Hunter, Daniel Muenstermann, Steffen Reith (HSRM) Ivan Peric (KIT)

OpenSource? OpenPDKs?

Issue:

- We use "large" and somewhat exotic process nodes that are constantly in danger of becoming unavailable (change of ownership, foundry oversubscribed or going bankrupt)
- Due to proprietary processes and PDKs, we cannot just transfer our designs to alternative processes/ foundries and partially not even discuss about details with collaborators thanks to NDAs

Solution/Proposal:

- Use OpenSource!
 - If the PDK (and ideally the process) is OpenSource, other foundries could step in and offer to process our ASICs
 - The usage of OpenSource chip design tools would save cost and allow for commercial spin-offs without Cadence license fees

FOSS 130nm Production PDK github.com/google/skywater-pdk

IHP-GmbH/**IHP-Open-PDK**

130nm BiCMOS Open Source PDK, dedicated for Analog, Mixed Signal and RF Design

શ્ર	12	⊙ 23	炅 4	☆ 317	ኇ 43	0
	Contributors	Issues	Discussions	Stars	Forks	

OpenSource!

Why am I here (again) today?

- Is this a WP1 proposal?
 - Does not really match the strategic research goals set out in the research proposal
 - But addresses one of the processes mentioned and might also relate to RG1.5?
 - Is just "evaluate" too small as a project?
- Rather a WG1/common project proposal?
 - Would be more than happy to not pursue this alone
 - Project is probably "cheap" (no software cost, tiny tapeout already paid for), but DRD3 approval and common fund contribution would help with PCBs and applying for national funding for (re-)submission of a larger chip
- Please reach out to me if you might be interested in joining the effort!

DRD3 - Solid State Detectors

- Research Proposal (Version 3.1) -

DRD3 Proposal Team

May 27, 2024

WG1 research goals <2027					
	Description				
RG 1.1	Spatial resolution: $\leq 3 \ \mu m$ position resolution				
RG 1.2	Timing resolution: towards 20 ps timing precision				
RG 1.3	Readout architectures: towards 100 MHz/cm ² , 1 GHz/cm ² with 3D stacked monolithic sensors, and on-chip reconfigurability				
RG 1.4	Radiation tolerance: towards $10^{16} n_{eq}/cm^2$ NIEL and 500 MRad				
RG 1.5	Low-cost large-area CMOS sensors				

	Several MPW1.1 submissions in				
D1.1	the identified technology pro-				
	cesses $(TJ/TSI 180 nm, LF)$				
	110/150 nm and IHP 130 nm in				
	2024, and TJ 65 nm in 2025)				
	Several MPW1.2 submissions in				
	the identified technology pro-				
D1.2	cesses $(TJ/TSI 180 nm, LF)$				
	110/150 nm and IHP 130 nm in				
	2026, and TJ 65 nm in 2027)				