

Sabato Luca¹ E-Cloud Studies for FCC-ee

Iadarola Giovanni², Mether Lotta², Tatiana Pieloni¹, Cantún Karla³, Garcia Cristobal¹, Kersevan Roberto¹, Maury *Humberto⁴ , Paraschou Konstantinos² , Pyziak Lucas¹ , Van Riesen-Haupt Léon¹ , Yaman Fatih⁵ , Zimmermann Frank¹*

ABP-CEI Section Meeting

15th August 2024

This work was performed under the auspices and with support from the Swiss Accelerator Research and Swiss Accelerator Research and Technology (CHART) program (www.chart.ch). echnology

Outline

- Introduction
- SEY Multipacting Thresholds
- Heat Loads
- Stability Studies
- Photoemission
- Nested Magnets
- Conclusions and Outlooks

Outline

• **Introduction**

- SEY Multipacting Thresholds
- Heat Loads
- Stability Studies
- Photoemission
- Nested Magnets
- Conclusions and Outlooks

Motivation

- The FCC-ee is a future circular positron-electron collider
- Electron cloud (e-cloud) effects have been observed in several circular accelerators all over the world (LHC, KEKB, DAɸNE, …)
	- o much more commonly in those operated with positively charged particles
- Presently among the major performance limitations for high energy collider o transverse beam instabilities, incoherent beam effects, vacuum degradation, heat load, …
- It is important to study how to supress the e-cloud in the design stage of a particle accelerator
	- o the e-cloud depends on many key parameters of the accelerator and the beams
	- \circ the e-cloud effects have to be studied for FCC-ee to give input to chamber design, material properties, filling schemes, and so on

5

FCC-ee Design Stage

In the last years, different versions of the FCC-ee parameters (important from the e-cloud point of view)

FCC-ee Mid-Term Review Parameters

[†] The integrated luminosity in the first two years is assumed to be half this value to account for the machine commissioning and beam tuning;

 $\frac{1}{4}$ The integrated luminosity in the first year, at a lower beam energy of about 173 GeV, is assumed to be about 65% of this value to account for the machine commissioning and beam tuning. The smaller time for commissioning compared with the lower energy running reflects the LEP/LEP-2 experience.

From FCC Feasibility Study Mid-Term Review Autumn 2023

• The Z configuration has been investigated, because the strongest e-cloud effects are foreseen for this configuration due to the largest number of bunches (smallest bunch spacing)

Possible Filling Schemes

Filling schemes (with constant beam current)

From Tor Raubenheimer

- Important to understand the impact of lower bunch intensity (we will need to fill the ring)
- The bunches are gradually filled from the booster at collision energy (top-up injection)

Magnetic Field Elements

Table 1: The magnetic field strengths for the baseline and CFM cell in the Z mode are shown, at a reference radius of 10 mm.

Courtesy of Cristobal Garcia and Leon Van Riesen-Haupt

- Dipoles 15.2 mT
- Quadrupoles 1.45 T/m
- Sextupoles 72.5 T/m²

FUTURE
CIRCULAR
COLLIDER

Outline

• Introduction

- **SEY Multipacting Thresholds**
- Heat Loads
- Stability Studies
- Photoemission
- Nested Magnets
- Conclusions and Outlooks

E-Cloud Build-Up Studies

- Find the material property constraints to avoid e-cloud avalanche multiplication (multipacting)
- The main quantity involved is the Secondary Electron Yield (SEY):

$$
\delta(E)=\frac{I_{\text{emit}}}{I_{\text{imp}}(E)}
$$

• To find the SEY multipacting threshold, we considered the e-cloud density in the full chamber (less noisy than the central e-cloud density)

• The analysed parameter in the next plots is the average e-cloud density when the saturation value is reached

500

E-Cloud Build-Up Studies: Dipole

The bunch intensities 1.00 and 1.50 \times 10¹¹ ppb are the most critical cases

E-Cloud Build-Up Studies: Summary

- Quadrupoles and sextupoles have the lowest SEY multipacting thresholds
- Larger SEY multipacting thresholds considering the filling scheme 2 (25 ns bunch spacing)
- Bunch intensities 1.00 and 1.50×10^{11} ppb are the most critical cases

Mitigation: Bunch Spacing

The SEY multipacting thresholds are extremely tight for baseline parameters

- Choosing a larger bunch spacing -> larger SEY multipacting thresholds
- For example, for the most critical element (quadrupole):
	- \circ the SEY multipacting threshold is 1.0 with a bunch spacing of 25 ns
	- \circ the SEY multipacting threshold is 1.0 with a bunch spacing of 30 ns
	- \circ the SEY multipacting threshold is 1.1 with a bunch spacing of 40 ns
	- \circ the SEY multipacting threshold is 1.3 with a bunch spacing of 50 ns

Bunch Spacing: Summary

SEY Multipacting thresholds (considering all intensity below nominal one)

Longon bunch crooing

Bunch Spacing: Negative Aspects

If the bunch spacing is larger (e.g., 2 times: 25 ns -> 50 ns)

in order to keep the beam current constant

larger bunch intensities (e.g., 2 times: 2.15×10^{11} ppb -> 4.30×10^{11} ppb)

It could lead to issues with other collective effects:

Courtesy of Roxana Roos (FCC week 2024)

Courtesy of Mauro Migliorati (FCC week 2024)

Beam-Beam Wake-fields and coupling impedance

Mitigation: Charge Accumulation Phase

The bunch intensities 1.00 and 1.50 \times 10¹¹ ppb are the most critical cases

During the charge accumulation phase: do not fill the bunches of the train uniformly (Now it is possible because the injection scheme from booster changed from full ring to 1/10)

In this way the critical bunch intensities will be reached with a larger bunch spacing

Charge accumulation phase

Charge accumulation phase

Charge accumulation phase: Dipole

Using the two options with special filling schemes during the charge accumulation phase, the SEY mutipacting thresholds are higher and they tend to the SEY multipacting thresholds in the case of the nominal bunch intensity

15/08/2024 ABP-CEI Section Meeting

Charge accumulation phase: Summary

- The two options with special filling schemes are also effective for the other analysed elements
- Quadrupoles and sextupoles have the lowest SEY multipacting thresholds

Outline

• Introduction

- SEY Multipacting Thresholds
- Heat Loads
- Stability Studies
- Photoemission
- Nested Magnets
- Conclusions and Outlooks

Heat Loads: Dipole

If multipacting (considering nominal bunch intensity and maximum simulated SEY=1.6): Filling scheme 1: ∼38.7 W/m -> full circumference ∼2.43 MW ∼4.87% of synchrotron radiation power Filling scheme 2: ∼30.4 W/m -> full circumference ∼1.91 MW ∼3.82% of synchrotron radiation power

If no multipacting (considering SEY smaller the SEY multipacting threshold, all simulated bunch intensities): Filling scheme 1 (SEY<=1.0) & 2 (SEY<=1.0): smaller than 0.01 W/m -> full circumference smaller than 700 W ∼0.002% of synchrotron radiation power

Heat Loads: Summary

- In case there is multipacting, the total heat loads are in the order of:
	- 7% of synchrotron radiation power for the filling scheme 1
	- o 5% of synchrotron radiation power for the filling scheme 2
- Heat loads are smaller considering the filling scheme 2 (25 ns bunch spacing)
- Dipoles are the main contributors to the total heat loads
- If there is no multipacting, the total heat loads are negligible compared to the synchrotron radiation power

FUTURE
CIRCULAR **DE**

Outline

- Introduction
- SEY Multipacting Thresholds
- Heat Loads
- **Stability Studies**
- Photoemission
- Nested Magnets
- Conclusions and Outlooks

E-Cloud Stability Threshold

- E-cloud could trigger instabilities, because the beams pass through the e-clouds and they receive transverse kicks
- What is the e-cloud density stability threshold?
	- 1. Theoretical equation:

$$
\rho_{e,th} = \frac{2\gamma v_s \omega_e \sigma_z/c}{\sqrt{3}KQr_e\beta_y L} \qquad \omega_e = \sqrt{\frac{\lambda_p r_e c^2}{\sigma_y(\sigma_x + \sigma_y)}} \qquad K = \omega_e \sigma_z/c \qquad \lambda_p = \frac{i_b}{\sqrt{2\pi}\sigma_z}
$$

From K. Ohmi et al., "Study of Electron Cloud Instabilities in FCC-hh", Proc. of IPAC2015

2. Simulations by means of PyECLOUD-PyHEADTAIL suite in order to track the beams through the e-clouds

- Theoretical and numerical e-cloud density stability threshold have the same order of magnitude
- Vertical plane is unstable 15/08/2024 ABP-CEI Section Meeting

E-Cloud Central Density

• E-cloud stability threshold has to be compared with the e-cloud density

E-Cloud Stability: Dipole

• Above the SEY multipacting threshold, the central density is above the stability threshold -> It could lead to beam instabilities

E-Cloud Stability: Summary

- Drift Spaces and Quadrupoles
	- Above the SEY multipacting threshold, the central density is above the stability threshold -> It could lead to beam instabilities
- **Sextupoles**
	- o Even above the SEY multipacting threshold, the central density is below the stability threshold (short total length of the sextupoles in the arcs)

FUTURE **EPFL**

Outline

- Introduction
- SEY Multipacting Thresholds
- Heat Loads
- Stability Studies
- **Photoemission**
- Nested Magnets
- Conclusions and Outlooks

- The circulating beam particles can produce primary electrons (seed)
	- \circ ionisation of the residual gas in the beam chamber
	- o **photoemission** from the chamber's wall due to the synchrotron radiation emitted by the beam
- The results presented in the previous slides do not take into account directly the photoemission o What is the impact of the photoelectrons on the e-cloud formation process?
- In PyECLOUD:
	- \circ K_{pe,st}: [m⁻¹] Number of photoelectrons generated per beam particle (positron) and per unit length 109 o Photoelectrons uniformly generated per segment of the vacuum chamber
		- motivated by the ray tracing simulations (from the vacuum team)

More details in *Pyziak Lucas'* presentation:

[https://indico.cern.ch/event/1412362/contributions/5936228/attachments/2852012/49872](https://indico.cern.ch/event/1412362/contributions/5936228/attachments/2852012/4987248/EC_sim_studies_photoemission.pdf) 48/EC sim studies photoemission.pdf

- Taking into account the photoemission in the e-cloud formation process
	- o the e-cloud density saturation value could be reached in less bunch passages and it could be larger o the gap length, needed to clean the vacuum chamber, could be larger

- The central density could be larger than the stability threshold even below the SEY multipacting threshold (even in the case of 25 ns bunch spacing)
- High values of $K_{pe,st}$ should be avoided (<10⁻⁴ m⁻¹ with margin)

- Photoelectron Yield Y: number of photoelectrons emitted per impinging photon
	- o property of the vacuum chamber surface

$$
Y = \frac{IK_{pe,st}}{\phi Le}
$$

- $K_{pe, st}$: [m⁻¹] Number of photoelectrons to be generated per beam particle (positron) and per unit length
- *I:* beam current (1.27 A)
- *L:* chamber's perimeter (278 mm)
- *e:* elementary charge

φ: realistic photon flux -> from ray tracing codes (e.g., SYNRAD+)

• From previous simulations of Roberto Kersevan (ongoing studies): \circ Photon flux around 10¹³ - 10¹⁴ photons/cm² s (not in the absorber areas)

High values of $K_{\text{pe,st}}$ should be avoided (<10⁻⁴ m⁻¹)

 $Y < 2.86 \cdot 10^{-3}$ (considering photon flux 10^{14} photons/cm²s, most conservative) Photoelectron yield should be between 3‰ – 3% Based on preliminary ray tracing simulations

Courtesy of Roberto Kersevan

- The constraint on the material is very tight (in the absorber areas the photon flux is expected to be even higher!)
- The synchrotron radiation leakage to the main chamber might be reduced with longer winglet

Vacuum chamber

- Another solution is under development by the vacuum group
	- o Design of a new synchrotron radiation absorber with a saw-tooth profile along the primary facet (where the primary synchrotron radiation photons hit)
	- \circ with the saw-tooth profile oriented in a specific way, only a much smaller fraction of the impinging photons are actually reflected
	- Welding lines o This solution results in a much larger deposition of synchrotron radiation power in the absorber areas, necessitating efficient cooling methods

EUTURE
CIRCULAR **EPFL**

Outline

- Introduction
- SEY Multipacting Thresholds
- Heat Loads
- Stability Studies
- Photoemission
- **Nested Magnets**
- Conclusions and Outlooks

- Nested Magnets under exploration by overlapping dipole fields with arc quadrupoles and sextupoles
	- Thereby increasing the dipole filling factor and reducing the synchrotron radiation (more details in the presentation of Leon Van Riesen-Haupt at FCC week 2024)
- What is the impact on the e-cloud in a dipole magnet adding a quadrupolar and/or a sextupolar gradient?

Dipole (15.2 mT)

Changing the polarity (focusing-defocusing) of the quadrupole

- \triangleright inverts the symmetry (left-right) of the e-cloud transverse distribution
- \triangleright does not alter the central e-cloud density before the bunch passage

 $\cdot 10^{11}$ ppb

 $- 0.21$

 \bullet \cdot 0.50

 \bullet \cdot 1.00

 \bullet 1.50

 \bullet 2.00

 -2.15

 \cdots 2.50

By adding a positive sextupolar component, the e-cloud transverse distribution is pushed away from the vacuum chambre centre

Nested Magnets: Summary

SEY multipacting thresholds worsen with nested magnets

Quadrupole (1.45 T/m) + Sextupole (72.5 T/m²)

By adding a sextupolar component to a quadrupole magnet

a large number of electrons are trapped in an off-centre cross shape

positioned to the right or left of the vacuum chamber centre depending on the combination of the gradient sign of the quadrupole and sextupole

FUTURE
CIRCULAR **DE**

Outline

- Introduction
- SEY Multipacting Thresholds
- Heat Loads
- Stability Studies
- Photoemission
- Nested Magnets

• **Conclusions and Outlooks**

Conclusions and Outlooks

- Material constraints in order to avoid e-cloud avalanche multiplication have been provided in terms of SEY multipacting thresholds
	- o Extremely tight for baseline parameters
		- Quadrupoles are the most critical elements
		- Bunch intensities in the range of $1/10$ of the nominal intensity to the nominal intensity are the most critical cases
	- \circ Methods to mitigate the material constraints have been investigated
		- increase bunch spacing, but it could lead to issues with other collective effects (keeping constant the beam current)
		- **EXPEDEE IS also in the accumulation phase avoid tight constraints for the critical bunch intensities**
- On going \circ Other methods to mitigate the material constraints could be studied
	- filling schemes with non-uniform bunch spacing with holes to avoid e-cloud multipacting (already used for LHC)
	- E-cloud avalanche multiplication could lead to additional heat loads
		- o In the order of some percent of synchrotron radiation power
		- Dipoles are the main contributors to the heat loads

Conclusions and Outlooks

- E-cloud could lead to transverse beam instabilities
	- o In all the studied elements (except sextupoles): above the SEY multipacting thresholds the beam is unstable
	- o The theoretical and numerical stability thresholds agree (order of magnitude) for the drift space and dipole magnets
- Considering the additional contribution of the photoemission on the e-cloud formation process, the beam could be unstable even below the SEY multipacting threshold
	- o The constraint on the material is very tight
- A solution is under development by vacuum group: design of a new synchrotron radiation absorber to reduce the reflected photons On going \circ
- On going \circ The vacuum team could provide a realistic distribution of photoelectron generation using ray tracing codes, allowing for more realistic simulations of the e-cloud formation process
	- Preliminary results on the nested magnets have been presented
		- o SEY multipacting thresholds are smaller for the nested magnets than the single dipole magnets
- On going \circ exploring other nested magnet configurations could help determine how dependent the observations are on the magnetic and gradient fields

Thanks for your attention

Beam chamber

Secondary Electron Emission can drive an **avalanche multiplication** effect filling the beam chamber with an **electron cloud**

Lost

Secondary Electron Emission

E-Cloud Formation

- The circulating beam particles can produce primary electrons (seed)
	- o ionisation of the residual gas in the beam chamber
	- o photoemission from the chamber's wall due to the synchrotron radiation emitted by the beam
- With the particle bunch passage
	- o primary electrons can be accelerated to energies up to hundreds of eV
	- o after impacting the wall, secondary electrons can be emitted
- Secondary electrons have energies of tens of eV

o after impacting the wall, they can be either absorbed or elastically reflected

Bunch passage

Seed

 \circ if they survive until the passage of the following bunch, they can be accelerated, projected onto the wall and produce secondaries

e - is emitted

POOL

Bunch spacing (e.g. 25 ns)

1081

 $10eV$

• Secondary electron emission can drive an avalanche multiplication effect

Courtesy of G. Iadarola

Time

E-Cloud Parameters

- Chamber geometry influences e- acceleration and time of flight
- Surface properties have a primary role in the e-multiplication process
	- \circ The main quantity involved is the Secondary Electron Yield (SEY):

$$
\circ\,\,\text{SEY depends on}\\
$$

- surface chemical properties
- history of the surface, in particular on accumulated electron dose -> to a certain extent the e-cloud cures itself (beam induced scrubbing)
- A key ingredient is the bunch spacing:
	- \circ It determines how many electrons survive between consecutive bunch passages
	- \circ Significant impact on multipacting threshold, i.e. SEY above which avalanche multiplication is triggered
- Bunch intensity and bunch length also have an important effect as they affect the acceleration received by the electrons
- Electron trajectories are strongly influenced by externally applied magnetic fields (e.g., dipoles, quadrupoles, and so on)

$$
\delta(E) = \frac{I_{\text{emit}}}{I_{\text{imp}}(E)}
$$

E-Cloud Build-Up Studies: Drift Space

The bunch intensities 1.00e11 and 1.50e11 ppb are the most critical cases

E-Cloud Build-Up Studies: Quadrupole

The bunch intensities 1.00e11 and 1.50e11 ppb are the most critical cases

E-Cloud Build-Up Studies: Sextupole

The bunch intensities 1.00e11 and 1.50e11 ppb, 2.00e11 and 2.15e11 ppb are the most critical cases

Charge accumulation phase

Simulation Results: Drift Space

Simulation Results: Quadrupole

SEY threshold 1.1

Simulation Results: Sextupole

Heat Loads: Drift Space

$$
L_{drift} = 17.4 \, \text{km} \, (L_{drift}/L = 19.18\%)
$$

Synchrotron radiation power: ∼50 MW per beam

If multipacting (considering nominal bunch intensity and maximum simulated SEY=1.6): Filling scheme 1: ∼38.7 W/m -> full circumference ∼673 kW ∼1.35% of synchrotron radiation power Filling scheme 2: ∼25.3 W/m -> full circumference ∼439 kW ∼0.88% of synchrotron radiation power

If no multipacting (considering SEY smaller the SEY multipacting threshold, all simulated bunch intensities): Filling scheme 1 (SEY<=1.1) & 2 (SEY<=1.2): smaller than 0.01 W/m -> full circumference smaller than 200 W ∼0.0004% of synchrotron radiation power

If multipacting (considering nominal bunch intensity and maximum simulated SEY=1.6): Filling scheme 1: ∼47.7 W/m -> full circumference ∼227 kW ∼0.45% of synchrotron radiation power Filling scheme 2: ∼39.8 W/m -> full circumference ∼190 kW ∼0.38% of synchrotron radiation power

If no multipacting (considering SEY smaller the SEY multipacting threshold, all simulated bunch intensities): Filling scheme 1 (SEY<=1.0) & 2 (SEY<=1.0): smaller than 0.01 W/m -> full circumference smaller than 50 W ∼0.0001% of synchrotron radiation power

If multipacting (considering nominal bunch intensity and maximum simulated SEY=1.6): Filling scheme 1: 49.2 W/m -> full circumference 44.3 kW ∼0.09% of synchrotron radiation power Filling scheme 2: 39.1 W/M -> full circumference 35.2 kW ∼0.07% of synchrotron radiation power

If no multipacting (considering SEY smaller the SEY multipacting threshold, all simulated bunch intensities): Filling scheme 1 (SEY<=1.0) & 2 (SEY<=1.0): smaller than 0.01 W/m -> full circumference smaller than 10 W ∼0.00002% of synchrotron radiation power

E-Cloud Stability Theoretical Threshold

$$
\rho_{e,th} = \frac{2\gamma v_s \omega_e \sigma_z/c}{\sqrt{3}KQr_e\beta_y L} \qquad \omega_e = \sqrt{\frac{\lambda_p r_e c^2}{\sigma_y(\sigma_x + \sigma_y)}} \qquad K = \omega_e \sigma_z/c \qquad \lambda_p = \frac{i_b}{\sqrt{2\pi}\sigma_z}
$$

From K. Ohmi et al., "Study of Electron Cloud Instabilities in FCC-hh", Proc. of IPAC2015

 $\rho_{e,th} = 1.89 \cdot 10^{10}$ e

considering the full circumference $L = 90.7$ km

- γ = E/E_0 , where *E* is the beam energy, E_0 is the particle rest energy.
- ν_s is the synchrotron tune.
- *σ^z* is the bunch length.
- *c* is the light velocity.
- *r^e* is the classical electron radius.
- *σ^x and σ^y* are the bunch horizontal and vertical dimension, respectively.
- λ_p is the line density of the proton bunch.
- *ω^e* is the electron angular oscillation frequency.
- *K* characterizes how many electrons contribute to the instability.
- *Q* is the quality factor of the wake field.
- β_{y} is the vertical beta function.
- L is the circumference length.

- Theoretical and numerical e-cloud density stability threshold have the same order of magnitude
- Vertical plane is unstable 15/08/2024 ABP-CEI Section Meeting

E-Cloud Stability: Drift Space

- E-cloud stability threshold has to be compared with the e-cloud density
	- o before the bunch passage
	- o close to the vacuum chamber centre

Above the SEY multipacting threshold, the central e-cloud density before the bunch passage is larger than the e-cloud stability threshold -> lead to beam instabilities

E-Cloud Stability: Quadrupole

• Above the SEY multipacting threshold, the central e-cloud density before the bunch passage is larger than the e-cloud stability threshold -> lead to beam instabilities

E-Cloud Stability: Sextupole

• The central e-cloud density before the bunch passage is smaller than the e-cloud stability threshold (element length dependance)

