Measurement of Charge Dependent Directed Flow at RHIC

Subhash Singha Institute of Modern Physics Chinese Academy of Sciences, Lanzhou

> West lake workshop on Nuclear Physics 2024 "西子"前沿核物理研讨会 2024 October 18-20, Zhejiang University, Hangzhou

Outline

- Motivation (directed flow)
- Electromagnetic field effects in HIC
- STAR detector and event plane reconstruction
- Results of charge dependent directed flow (Δv_1)
 - Quark coalescence hypothesis
 - Δv₁ in asymmetric collisions (Cu+Au)
 - Δv_1 for charm hadrons
 - Δv_1 for Light hadrons
- Summary and outlook

Collective flow

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum 2v_{n}\cos n(\phi - \Psi_{n}^{EP})\right)$$

<u>Observables</u>

- v₁ : Directed flow
- v₂ : Elliptic flow
- v_3 : Triangular flow

Flow coefficients are sensitive to:

initial/final state properties of the medium, EoS and degrees of freedom

Directed flow in heavy ion collisions

- Directed flow is the sideward collective motion of the produced particles within the reaction plane (x-z plane)
- Directed flow developed early in the collisions around time scale 2R/γ ~ 0.1 fm/c
- Probe of early stage of collisions
- Sensitive to the pressure
- Sensitive to the EoS

- EoS without 1st order PT
 Monotonic energy dependence
- EoS with 1st order PT
 Non-Monotonic energy dependence, dip in dv₁/dy

 $^{10} \sqrt{s_{_{
m NN}}}$ (GeV)

Hydro

10²

QCD matter under extreme conditions

• Ultra strong magnetic field can give rise wide range of exciting phenomena with applications in cosmology, neutron star and HIC

QCD matter under extreme conditions

In non-central heavy-ion collisions

- Initial rapid rotation ($\omega \sim 10^{21} \text{ s}^{-1}$)
- Initial strong magnetic field (B~ 10¹⁸ Gauss)

Heavy-ion collisions: Controlled experiment to study QCD medium under rapid rotation and electro-magnetic field

New frontier research to understand The properties of QCD medium

Impact on QCD vacuum and its topology (Chiral Magnetic Effect)

Impact on QCD phase transition, chiral symmetry restoration

Electromagnetic effects in HIC

Gursoy et al, PRC 89, 054905 (2014)

Observable

$$v_1 \sim \langle \cos(\phi - \Psi_R) \rangle$$

 $\Delta v_{1} \sim v_{1}(h^{+}) - v_{1}(h^{-})$

(sensitive to EM effects)

- The moving spectators can produce enormously large B field (eB ~10¹⁸ G)
- There could be three competitive effects

• <u>Hall effect:</u> $\mathbf{F} = q \, \mathbf{v} \times \mathbf{B}$

Lorentz force exerts a sideways push on charged particles In opposite directions for opposite particles (along -ve X-direction in +ve rapidity and vice-versa)

Faraday effect:
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Time dependent **B** field generates a large **E** field Induced Faraday current will oppose the drift due to **B** field

Coulomb effect: Coulomb field of the charged spectators

- Imprints of EM field effects
- Hall: positive Δv_1
- Faraday: negative Δv_1
- Coulomb: negative Δv_1

STAR detector

Heavy Flavor Tracker (2014-2016)

- Uniform acceptance, full azimuthal coverage, excellent PID capability
- <u>TPC</u>: tracking, centrality and event plane
- EPD, ZDC, BBC: event plane
- <u>TPC+TOF</u>: particle identification

Event plane reconstruction

$$v_1 \sim \frac{\langle \cos(\phi - \Psi_{EP}) \rangle}{\text{EP} - \text{resolution}}$$

- v_1 signal is significant at forward rapidity Better ψ_1 resolution than mid-rapidity detectors
- Large η-gap significantly reduces non-flow contribution

Quark coalescence using directed flow

Test the assumption that the de-confined quarks acquired v_n , then they form hadrons:

 $v_n^{\text{hadron}} = \sum v_n^{\text{constituent-quarks}}$

The origin of scaling is interpreted as an evidence for dominance of quark degrees of freedom

Particle	Quark content
anti-A	uds
anti-p	uud
K-	us

qq vs. qqq

Quark coalescence hypothesis

Electromagnetic field in UPC

- Charged nuclei produce highly Lorentz contracted EM field
- Cross-sections for $\gamma\gamma \rightarrow e^+e^$ are related to EM field strength and configuration

Ultra Peripheral Collisions (UPC)

STAR, PRL 127, 052302 (2021)

- Observed large $\cos(4\Delta\phi)$ modulation
 - Features consistent with strong EM field
 - No QGP medium
 - B field in vacuum

Electric field in asymmetric collision system

- In asymmetric collision system \rightarrow in-plane **E** field (Coulomb effect)
- Δv_1 in Cu+Au qualitatively agrees with expectation
- Can constrain electrical conductivity of the medium

Charm hadron directed flow splitting

Charm quark

Formation time: $\tau_{CQ} \sim 0.1$ fm/c Long relaxation time

Sensitive to early time B-field Can retain its memory

B field in QGP

• Predicted splitting at a measurable range for charm hadrons

• Δv_1 (charm quark) >> Δv_1 (light quark)

14

Observation of D⁰ directed flow

STAR, PRL 123, 162301 (2019)

- First observation of non zero charm v₁
- v₁: D⁰ >> K

Charge dependent D^0 directed flow (Δv_1)

Model: with electrical conductivity of QGP

- First attempt to probe EM field effects via charm v_1
- Δv_1 were inconclusive, not enough precision to constrain QGP conductivity

Charge dependent charm hadron directed flow

(Run-3 can provide good precision)

- First attempt to probe EM field effects via charm v_1
- Δv_1 were inconclusive for both RHIC and LHC

Charm hadrons are promising probe but challenging ...

Charge dependent light hadron directed flow

(b)

-20

2.0

 $\in [1, 2]$

- **Imprints of EM field effects** •
- Hall: positive Δv_1
- Faraday: negative Δv_1
- Coulomb: negative Δv_1 •

 $0 < p_T < 3 \,\,{\rm GeV}$

а

-2.0

0.0

2.0

GeV

y

-2.5

.⊒-5.0

Charge dependent light hadron directed flow

Transported quark effect: $\Delta v_1 \neq 0$

"u" and *"d"* quarks transported from incoming nuclei towards mid-rapidity

- Imprints of EM field effects
- Hall: positive Δv_1
- Faraday: negative Δv_1
- Coulomb: negative Δv_1

• Non-EM field effects
• Transport:
$$\Delta v_1^{\dagger} \neq 0$$

$$p: uud \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} > 0$$

$$\overline{p}: \overline{u}\overline{u}\overline{d} \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} > 0$$

$$K^+: u\overline{s} \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} > 0$$

$$\pi^+: u\overline{d} \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} < 0$$

$$\pi^-: \overline{u}\overline{d} \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} < 0$$

$$(\#d>\#u, \text{Au neutron rich})$$

Charge dependent light hadron directed flow

• Naive expectation for protons: EM field + transport

• For protons Δv_1 can change sign

(if Faraday+Coulomb dominates over Hall effect)

Light hadron directed flow v₁

• Significant splitting for proton's Δv_1 (> 5 σ significance)

(Negative Δv_1 consistent with Faraday+Coulomb dominates over Hall effect)

Charge dependent light quark directed flow

STAR, PRX 14, 011028 (2024)

- For protons and kaons: sign change in Δv_1 in peripheral collisions (Negative Δv_1 consistent with Faraday+Coulomb dominates over Hall effect)
- Model iEBE-VISHNU + EM: $\sigma \sim 0.023 \text{ fm}^{-1}$ (falls within a reasonable range)

Charge dependent light quark directed flow

STAR, PRX 14, 011028 (2024)

• For protons and kaons: sign change in Δv_1 in peripheral collisions

(Negative Δv_1 consistent with Faraday+Coulomb dominates over Hall effect)

• For pions: $\Delta v_1 \sim 0$ (large uncertainty)

Light hadron dv₁/dy: system size dependence

- pions & kaons: U+U ~ Au+Au ~ Isobar
- protons: U+U < Au+Au < Isobar
- anti-protons: U+U > Au+Au > Isobar

Light hadron $\Delta dv_1/dy$: system size dependence

25

- Interplay of baryon transport and electromagnetic field effects across centralities
- Require proper modeling to understand the data

in different systems several factors to be considered:

- strength and lifetime of EM-field
- QGP lifetime and conductivity
- transport
- ..

Bloczynski et al, NPA 939, 85 (2015)

Light hadron $\Delta dv_1/dy$: system size dependence

- Difference Δv₁: h⁺ h⁻
- pions & kaons: U+U ~ Au+Au ~ Isobar
- protons: U+U < Au+Au < Isobar

- Sum Σv₁ : h⁺ + h⁻
- pions & kaons: U+U ~ Au+Au ~ Isobar
- protons: U+U ~ Au+Au ~ Isobar

Light hadron $\Delta dv_1/dy$: beam energy dependence

- In peripheral, negative Δv_1 increases with decreasing beam energy
- consistent with dominance of Faraday and coulomb effect

With decreasing energy:

- Nuclear passage time is large and B-field lifetime could be longer
- Lifetime of fireball could be shorter

Light hadron $v_1(p_T)$: beam energy dependence

- Peripheral collisions (40-80%):
- Negative Δv_1 increases linearly with p_T
- Qualitatively Consistent with EM prediction

Light hadron $v_1(p_T)$: beam energy dependence

29

Hydro with baryonic profile

- Hydrodynamic model with a baryonic profile (without EM) can qualitatively capture proton Δv_1
- However, it can not explain negative Δv_1 for pions and kaons
- Require modeling transport+EM to better understand Δv₁

Light hadron $\Delta dv_1/dy$: using only produced quarks

 Δv_1 measured using combination of <u>transported-quark-free hadrons</u>

Combination of particle with similar mass but different Δq and ΔS

Index	Quark mass	Δq	ΔS	Δv_1 combination
1	$\Delta m = 0$	0	0	$[ar{p}(ar{u}ar{u}ar{d})+\phi(sar{s})]-[K^{-}(ar{u}s)+ar{\Lambda}(ar{u}ar{d}ar{s})]$
2	$\Delta m \approx 0$	1	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^-(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$
3	$\Delta m pprox 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$
4	$\Delta m = 0$	2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})]-[\Omega^-(sss)]$
5	$\Delta m \approx 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$

• Study Δv_1 as function of charge difference (Δq) and strangeness difference (ΔS)

Sheikh et al, PRC 105, 014912, (2022)

Light hadron $\Delta dv_1/dy$: using only produced quarks

New Proposals:

2D fit to decompose the correlation between Δq and ΔS Role of baryon transport, some cases with Δq , $\Delta S \neq 0$ also have $\Delta B \neq 0$ *F*

Nayak et al PLB 849, 138479 (2024)

Parida et al, 2305.08806

Summary

- Background strong EM field rich in physics and interdisciplinary (pre-condition for CME, QCD phase transition, chiral symmetry and many more)
- Measurement of charge dependent directed flow (Δv_1)
 - Coulomb effect in asymmetric collisions (Cu+Au)
 - For charm hadrons (early production) Hall effect is relevant
 - For light hadrons: dominance of Faraday and coulomb in peripheral collisions Imprints of electromagnetic field effects observed in HIC
 - Constrain strength and lifetime of EM-field
 - Provide knowledge of electrical conductivity of the QGP medium
 - Provide information on transport mechanism
- More theory input is needed to understand system-size and energy dependence of Δv₁

Outlook-I: Polarization difference $P_{\Lambda} - P_{\bar{\Lambda}}$

From precise BES-II data:

- Upper limit on late-stage B-field:
- B < 9.4×10^{12} T at 19.6 GeV and B < 1.4×10^{13} T at 19.6 GeV
- Polarization of hyperons with different magnetic moments (Λ, Ξ, Ω)

Outlook-II: Neutral and charged vector mesons

- Under B-field, one expect $N_{\rho^{\pm}} > N_{\rho^{0}}$ from Landau level splitting (isospin violation) $\epsilon_{n,s_z}^2(p_z) = p_z^2 + (2n - 2 \operatorname{sign}(q)s_z + 1) |qB| + m^2$
- $K^{*\pm}, K^{*0} \rightarrow$ easier reconstruction, negligible feed down effect
- Yield and ratios $(K^{*\pm}/K^{*0})$ can be useful in late-stage B-field and possibility of many associated phenomenon (landau splitting, vector meson condensation)

35

$$K^{*0} \to K^{\pm} \pi^{\mp}, K^{*\pm} \to K^0_{\mathrm{S}} \pi^{\pm}$$

Stay tuned till upcoming Quark Matter

Thank you for your attention

Many thanks to STAR colleagues for discussion

QCD phase diagram and RHIC Beam Energy Scan

Conjectured QCD Phase diagram

BES Program: \$<u>`</u> 30. 0 ی. 2. م 35 13.5 2.5 0° 2° 2° 2° 2° 2° 4.5 √s_№ (GeV) 10⁴ BES-II SFXT BES-I Events (M) 10³ 10² 10 0.5 0.2 0.3 0.4 0.6 0.1 0.7 $\mu_{_{\mathsf{R}}}$ (GeV)

Collider: 7.7, 9.2, 11.5, 14.6, 17.3, 19.6, 27, 39, 54.4, 62.4, 200 (GeV) Fixed Target: 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, 7.7, 9.2, 11.5, 13.7 (GeV)

most precise data to map the QCD phase diagram

- Find signatures of Phase Transition
- QCD Critical point
- Turn-off of QGP signatures

Directed flow from BES-I

38

Model JAM EoS JAM: proton v₁ 0.30 0.10 —■— JAM –∎– JAM protons JAM-1.Opt 📥 JAM-1.Opt 0.25 – |AM-χ-over JAM-χ-over 0.05 $\left. dv_{1}/dy \right|_{y=0}$ 0.20 p/e0.00 0.15 0.10 -0.05STAR E895/NA49 0.05 0.5 1.0 1.5 2.0 2.5 3.0 3.5 15 20 25 5 10 30 0 e (GeV/fm³) $\sqrt{s_{NN}}$ (GeV)

At 1st order phase transition, pressure drops as speed of sound goes to zero

Y. Nara et al, PLB 769, 543-548 (2017)

Primary observations

Around 10-20 GeV:

- proton v₁ changes sign
- net-proton v₁ change sign twice with a minima

Features qualitatively resemble the model prediction with 1st order phase transition