Electric Conductivity of QCD Matter in High-Energy Heavy-Ion Collisions

Department of physics, Hiroshima University International Institute for Sustainability with Knotted Chiral Meta Matter SKCM². Hiroshima University Kobayashi Maskawa Institute, Nagoya University Department of Physics, Nagoya University

Chiho NONAKA

In collaboration with Nicholas J. Benoit, Kouki Nakamura, Takahiro Miyoshi and Hiroyuki Takahashi

Hadron Physics Group

Octover 16, 2024@

Contents

• **Relativistic resistive magnetohydrodynamics (RRMHD)**

- Electromagnetic fields in high-energy heavy-ion collisions
- **Electric conductivity of QCD matter in high-energy heavy-ion collisions**
	- Charge dependent flow
	- Elliptic flow of photons
- **Summary**

Electromagnetic Field in Heavy Ion Collisions

• **Strong Electromagnetic field ?**

- Au + Au ($\sqrt{s_{NN}}$ = 200 GeV) : 10¹⁴ T ~10 m_π^2
- Pb + Pb $(\sqrt{s_{NN}} = 2.76 \text{ TeV}) : 10^{15} \text{ T}$

Nakamura, Miyoshi, C. N. and Takahashi, Phys. Rev. C 107, (2023) 014901 Nakamura, Miyoshi, C. N. and Takahashi, Eur.Phys.J.C 83 (2023) 3, 229. Nakamura, Miyoshi, C. N. and Takahashi, Phys. Rev. C 107 (2023) 3, 034912

Electromagnetic Field in Heavy-Ion Collisions

◼**Electromagnetic field in heavy-ion collisions** ➢**Production of strong magnetic field** • Au + Au $(\sqrt{s_{NN}} = 200 \text{ GeV})$: 10^{14} T ~10 m_π^2 Not observed E • Pb + Pb $(\sqrt{s_{NN}} = 2.76 \text{ TeV})$: 10¹⁵ T ■**Response to electromagnetic field** В • **Electric conductivity Experimental data?** • Lattice QCD: $\sigma \sim 0.023$ fm⁻¹ @ $T \sim 250$ MeV Gert Aarts, et al. Phys. Rev. Lett., 99:022002, 2007. \overline{M} _{Magnet}on \overline{M} \vec{B} : Magnetic field E. \vec{E} : Electric field v : velocity 222 SKCM² 4 C. NONAKA

Electric Conductivity of QCD Matter

Lattice QCD

C. NONAKA

$$
\text{Electric Conductivity on the Lattice} \label{eq:2} \sigma = \frac{1}{6} \frac{\partial}{\omega} \left(\int d^4x e^{i\omega t} \langle [j_{\mu}^{\text{em}}(t,x), j_{\mu}^{\text{em}}(0,0)] \rangle \right)|_{\omega=0}
$$

Uses linear-response theory (Kubo formula) Low energy limit of the electromagnetic spectral function

- Does not include external magnetic field effects
- Uses approximately realistic pion mass
- General agreement among results using a variety of methods and parameters

Aarts, Nikolaev, EPJ.A 57, 118 (2021); 2008.12326 [hep-lat]

Electromagnetic Field in Heavy-Ion Collisions

◼**Electromagnetic field in heavy ion collisions**

- ➢**Production of strong magnetic field** • Au + Au $(\sqrt{s_{NN}} = 200 \text{ GeV})$: 10^{14} T ~10 m_π^2 Not observed
	- Pb + Pb $(\sqrt{s_{NN}} = 2.76 \text{ TeV})$: 10¹⁵ T

■**Response to electromagnetic field**

- **Electric conductivity from lattice QCD**
- $\sigma \sim 0.023$ fm⁻¹ @ $T \sim 250$ MeV
- \triangleright Magnetohydrodynamics $(\sigma \to \infty)$
	- *Inghirami, et al, Eur. Phys. J. C (2020) 80:293*

Phys. Rev. Lett., 99:022002, 2007.

Gert Aarts, et al.

- Focus only on magnetic field
- **Quantitative analysis on electric conductivity**

Electric conductivity the series of the experimental data

NONAKA

Experimental data?

Relativistic Resistive Magnetohydrodynamics

 \vec{B} : Magnetic field \vec{E} : Electric field v : velocity

E

В

E

Electromagnetic Fields and Property of QGP

 \vec{E} : electric field

• **Electric Conductivity**

• Ampere's law : $\partial_t \vec{E} - \nabla \times \vec{B} = -\vec{j}$

• **Ohm's law makes electric field dissipate** • ➡**Dissipated energy to fluid**

• **Charge is induced.**

NONAKA

- Charge is induced by electric field.
- Induced charge depends on charge conductivity
- **Dissipation of magnetic field Charge conductivity of QGP**
- **dissipation of electromagnetic fields and charge distribution QGP** 2^2 C. NONAKA 2023 **2023 SKCM** 2023

Understanding of QGP Property

Charge conductivity of QGP from analysis of high-energy heavy-ion collisions

Charge dependent directed flow

Asymmetic collisions \rightarrow i.e., Hirono, Hongo, and Hirano, PRC 90, 021903 (2014). Symmetric collisions

Proposed EM observables

Dileptons \rightarrow i.e., Akamatsu, Hamagaki, Hatsuda, and Hirano, PRC 85, 054903 (2012). Photons \rightarrow i.e., Sun and Yan, PRC 109, 034917 (2024).

Understanding of QGP Property

Charge conductivity of QGP from analysis of high-energy heavy-ion collisions

Construction of relativistic resistive magnetohydrodynamics

Relativistic Resistive Magnetohydrodynamics

Relativistic Resistive

Magneto-Hydrodynamics (RRMHD)

Nakamura, Miyoshi, CN and Takahashi, PRC107, no.1, 014901 (2023)

+approximate solutions of Maxwell eq.

Glauber model **Example 20** Hydrodynamic eq. + Maxwell eq. + Ohm's law $\partial_{\mu}T^{\mu\nu}=F^{\nu\lambda}J_{\lambda} \quad J^{\mu}=\sigma e^{\mu}$

Relativistic Resistive

C. NONAKA

Magneto-Hydrodynamics (RRMHD)

◼**RRMHD equation**

Komissarov, Mon. Not. R. Astron. Soc. 382, 995-1004 (2007)

Nakamura, Miyoshi, CN and Takahashi, PRC107, no.1, 014901 (2023)

RRMHD Equation in Milne Coordinates

• **Milne coordinates**

- Expanding systems in the longitudinal direction (τ, x, y, η_s)
	- Strong expansion in the longitudinal direction is effectively included.
	- Number of grid of fluid is saved.

RRMHD Equation
\n
$$
\partial_{\tau}(\tau U) + \partial_i(\tau F^i) = \tau S
$$
\n
$$
U = \begin{pmatrix} D \\ m_j \\ E^j \\ B^j \\ E^j \end{pmatrix}, F^i = \begin{pmatrix} Dv^i \\ \Pi^{ji} \\ m^i \\ \varepsilon^{jik} B_k \\ \varepsilon^{jik} B_k \end{pmatrix}, S = \begin{pmatrix} 0 \\ \frac{1}{2} T^{ik} \partial_j g_{ik} \\ -\frac{1}{2} T^{ik} \partial_0 g_{ik} \\ 0 \\ 0 \end{pmatrix}
$$

 $\tau=\surd t$

1

2 ln

 $\eta_s =$

 $2 - z$

2

 $t + z$

 $t-z$

Validation of the Code

• **RRMHD in the Milne coordinates**

Nakamura, Miyoshi, CN and Takahashi, Eur.Phys.J.C 83 (2023) 3, 229.

New Test Problem

- (1+1) dimensional expansion system $u^{\mu} = (\cosh Y, 0, 0, \sinh Y)$
	- Comparison between quasi-analytical solution and RRMHD simulation

14

Symmetric and Asymmetric Systems

◼**Au-Au collisions**

■Cu-Au collisions

- ➢ **Symmetric pressure gradient**
- ➢ **Almond-shaped medium**
- ➢**Asymmetric pressure gradient**
- ➢**Distorted Almond-shaped medium**

Hirono, Hongo, Hirano

Analysis on High-Energy Heavy-Ion Collisions

Initial Condition:**QGP Medium**

Initial Condition:**Electromagnetic Fields**

■Asymptotic solution of Maxwell eq. ➢**Electromagnetic field made by point charge moving in the longitudinal axis**

- **Proton distribution in nucleus : uniform sphere**
- Constant charge conductivity $(\sigma = 0.023 \text{ fm}^{-1})$

$$
\nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},
$$
\n
$$
\nabla \cdot \mathbf{D} = e\delta(z - vt)\delta(\mathbf{b}),
$$
\n
$$
\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \sigma \mathbf{E} + ev\hat{z}\delta(z - vt)\delta(\mathbf{b})
$$

Integration of the asymptotic solutions over

the charge distribution inside of nucleus

C. NONAKA

Tuchin, Phys.Rev.C88,024911(2013)

Electromagnetic Field in Symmetric and Asymmetric Systems

■**Au-Au collisions**

- ➢Magnetic field
	- **Strong magnetic field**
- ➢Electric field
	- **No electric field**

■Cu-Au collisions

- ➢Magnetic field • **Strong magnetic field**
- ➢Electric field
	- $E \neq 0$ due to the asymmetry **of the charge distribution**

Hirono, Hongo, Hirano

Initial Condition: Electromagnetic Fields $(\eta_s = 0)$

◼**Au+Au**

➢Strong magnetic fields in QGP

 \blacktriangleright Electric field \sim 0 in QGP

◼**Cu+Au**

➢Strong magnetic field in QGP

➢Finite electric field in QGP

Space-time Evolution

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

Au+Au collision system

First calculation in HIC with RRMHD code

Analysis of Heavy Ion Collisions

Charge Dependent Flow

Directed Flow

 p_{x} • $v_1 \coloneqq \langle \cos(\phi - \Psi_1) \rangle \sim \langle$ ⟩ p_T \blacktriangleright Au-Au collisions ($\sqrt{s_{NN}}$ = 200 GeV) • Parameter fixed in initial condition from comparison with STAR data STAR Collaboration, Phys. Rev. Lett. **101** (2008), 252301 0.04 \rightarrow RRMHD code σ = 100 [fm⁻¹] σ =100 fm⁻¹ $---$ RRMHD code $\sigma = 1$ [fm⁻¹] 0.03 RRMHD code $\sigma = 0$ [fm⁻¹] $\sigma = 1$ fm⁻¹ STAR Au - Au centrality 30 - 60% 0.02 $\sigma = 0$ fm⁻¹ ◦:STAR 0.01 \vec{b} o -0.01 -0.02 (a -0.03 Au - Au $b = 10$ [fm] -0.04 -2.0 -1.5 -1.0 -0.5 000 0.5 1.0 1.5 2.0

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

$$
\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}
$$

- \triangle Cu-Au collisions ($\sqrt{s_{NN}}$ = 200 GeV)
	- Decreases with conductivity
	- Dissipation suppresses flow

in the Cu direction

Energy Transfer by Ohm Dissipation

Thermal energy

Kinetic energy

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

• **Energy Transfer**

 $D(u) \coloneqq j^{\mu} e_{\mu} = \gamma [j \cdot (E + v \times B) - q(v \cdot E)]$

energy of the electromagnetic field

NONAKA

no contribution to v_1

Au+Au collisions Cu+Au collisions

Directed Flow

C. NONAKA

• $v_1 \coloneqq \langle \cos(\phi - \Psi_1) \rangle \sim \langle$ ⟩ p_T \blacktriangleright Au-Au collisions ($\sqrt{s_{NN}}$ = 200 GeV) • Parameter fixed in initial condition from comparison with STAR data STAR Collaboration, Phys. Rev. Lett. **101** (2008), 252301 0.04 \rightarrow RRMHD code σ = 100 [fm⁻¹] σ =100 fm⁻¹ $---$ RRMHD code $\sigma = 1$ [fm⁻¹] 0.03 RRMHD code $\sigma = 0$ [fm⁻¹] $\sigma = 1$ fm⁻¹ STAR Au - Au centrality 30 - 60% 0.02 $\sigma = 0$ fm⁻¹ ◦:STAR 0.01 \vec{b} o -0.01 -0.02 (a -0.03 Au - Au $b = 10$ [fm] -0.04 -2.0 -1.5 -1.0 -0.5 000 0.5 1.0 1.5 2.0

 p_{x}

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

 $\eta =$ 1 $\frac{1}{2}$ ln $\frac{|p| + p_z}{|p| - p_z}$ $|p| - p_z$

- \triangle Cu-Au collisions ($\sqrt{s_{NN}} = 200$ GeV)
	- Decreases with conductivity
	- Dissipation suppresses flow

in the Cu direction

Charge Dependence of Δv **₂: Au + Au**

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

• $\Delta v_2 = v_2^{\pi^+}$ $(\eta) - v_2^{\pi^-}$ (η)

C. NONAKA

- **Negative Elliptic Flow**
	- Contribution of negative charge on freezeout hypersurface
	- Symmetric structure: initial electric field to the collision axis
	- **Electric conductivity dependence is observed even** Δ**in the symmetry system.**

Charge Dependence of Δv **₂: Cu + Au**

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

- $\Delta v_2 = v_2^{\pi^+}$ $(\eta) - v_2^{\pi^-}$ (η)
	- **Negative Elliptic Flow**
		- Contribution of negative charge on freezeout hypersurface
		- Asymmetric structure: initial electric field to the collision axis
		- **Electric conductivity dependence is observed.**

initial electromagnetic field distribution electrical conductivity Δ V₂:

NONAKA

 x [fm]

 $q = 0.023$ [fm⁻¹]

Charge Dependence of D*v***1**:**Au**+**Au**

- $\Delta v_1 = v_1^{\pi^+}$ η) – $v_1^{\pi^-}$ $\boldsymbol{\eta}$
	- **Clear dependence of charge conductivity**

	Proportion to electric conductivity

	Negative charge induced in the opposite
		- **Proportion to electric conductivity**
		- **Negative charge induced in the opposite direction of fluid flow suppression of of negative charge**
	- $-\Delta v_1$ with finite σ is consistent with STAR data
		- $\sigma = 0.0058$ fm⁻¹

C. NONAKA

ex. $\sigma_{\text{LOCD}} = 0.023 \text{ fm}^{-1}$ from lattice QCD ✓**QGP electrical conductivity from** *Gert Aarts, et al. Phys. Rev. Lett., 99:022002, 2007.*

high-precision measurement of Δv_1

Charge Dependence of Δv_1 **: Cu + Au**

- \bullet $\Delta v_{1} = v_{1}^{\pi^+}$ η) – $v_1^{\pi^-}$ $\boldsymbol{\eta}$
	- **Electric field created by initial condition**
		- Δv_1 is finite at $\eta = 0$
		- Asymmetry structure to $\eta = 0$
	- **Proportion to electric conductivity**
		- Δv_1 vanishes at $\eta = 0.5$.
	- \checkmark Electrical conductivity $\langle -\Delta v_1 \rangle$ at $\eta = 0$
	- \checkmark lnitial electrical field from η dependence

QGP electrical conductivity.

of Δv_1

Comparison with STAR Data

NONAKA

*Benoit ,Miyoshi, CN , Sakai and Takahashi, in preparation*What RRMHD says about recent experimental result

Our RRMHD model can reproduce the STAR experiment behavior \bullet

By courtesy of Benoit

Photon *Benoit ,Miyoshi, CN , Sakai and Takahashi, in preparation*

Nicholas J. Benoit

• **Electromagnetic fields inside QGP**

• EM fields penetrating QGP drive charge carriers out-of-equilibrium

 $J^{\mu} = q u^{\mu} + \sigma F^{\mu\nu} u_{\nu}$ First order dissipation from the EM fields

• Taking the Boltzmann equation in the relaxation time application

$$
k^{\mu}\partial_{\mu}f_{a} + eQ_{a}F^{\mu\nu}k_{\mu}\frac{\partial f_{a}}{\partial k^{\nu}} = -\frac{k^{\mu}u_{\mu}}{\tau_{R}}\delta f_{a,EM}^{(n)}
$$
 Sun and Yan, PRC 109, 034917 (2024).

Vlasov term for the external EM fields Canader "n" corrections

to the quark distribution function

Benoit

• **Electromagnetic fields inside QGP**

• 1st order corrections

 $k^\mu \partial_\mu f_a + e Q_a F^{\mu\nu} k_\mu \frac{\partial f_a}{\partial k^\nu} = -\frac{k^\mu u_\mu}{\tau_R} \delta f^{(n)}_{a,EM}$ *Sun and Yan, PRC 109, 034917 (2024).* $f_a = f_{a,eq} + \delta f_{a,EM}^{(1)} + \delta f_{a,EM}^{(2)} + \delta f_{a,EM}^{(3)} + \cdots$

$$
\delta f_{a,EM}^{(1)}(X,k) = -\frac{-f_{a,eq}(1 - f_{a,eq})}{T \chi_{el} k^{\mu} u_{\mu}} \frac{e \sigma Q_a e^{\mu} k_{\mu}}{E}
$$

Electric conductivity of QGP from Landau matching with the current EM fields in the fluid rest frame

$$
e^{\mu} = (\gamma v_k E^k, \gamma E^i + \gamma \epsilon^{ijk} v_j B_k)
$$

Benoit

• **Electromagnetic fields inside QGP**

Benoit

• The fluid $+$ EM field contributions from hydrodynamics

Temperature and four velocity

$$
\delta f^{(1)}_{a,EM}(X,k) = -\frac{-f_{a,eq}(1-f_{a,eq})}{T \chi_{el} k^{\mu} u_{\mu}} \underline{e \sigma Q_a} \underline{e^{\mu}} k_{\mu}
$$

$$
\text{Electric susceptibility of QGP}
$$
\n
$$
\chi_{a,el} = -\frac{1}{3} \int \frac{d\vec{p}}{(2\pi)^3 E_p} (p^{\sigma} p^{\nu} \Delta_{\sigma\nu}) \frac{-f_{a,eq}(1 - f_{a,eq})}{p^{\mu} u_{\mu}}
$$

C. NONAKA

Spacetime dependent EM fields in QGP medium

$$
e^{\mu} = (\gamma v_k E^k, \gamma E^i + \gamma \epsilon^{ijk} v_j B_k)
$$

• **Electromagnetic fields inside QGP**

Benoit

- The fluid $+$ EM field contributions from hydrodynamics
- All of those values can be calculated self-consistently using relativistic resistive magneto-hydrodynamics (RRHMD)

Temperature and four velocity

$$
\delta f^{(1)}_{a,EM}(X,k) = -\frac{-f_{a,eq}(1-f_{a,eq})}{T \chi_{el} k^{\mu} u_{\mu}} \underline{e \sigma Q_a} \underline{e^{\mu}} k_{\mu}
$$

$$
\text{Electric susceptibility of QGP}
$$
\n
$$
\chi_{a,el} = -\frac{1}{3} \int \frac{d\vec{p}}{(2\pi)^3 E_p} (p^{\sigma} p^{\nu} \Delta_{\sigma\nu}) \frac{-f_{a,eq}(1 - f_{a,eq})}{p^{\mu} u_{\mu}}
$$

C. NONAKA

Spacetime dependent EM fields in QGP medium

$$
e^{\mu} = (\gamma v_k E^k, \gamma E^i + \gamma \epsilon^{ijk} v_j B_k)
$$

Photon production from QGP and EM fields

• **Rate of QGP photon production should be increased by the EM fields**

$$
E_k \frac{dR}{d^3 \vec{k}} = E_k \frac{dR}{d^3 \vec{k}}^{\text{QGP}} + E_k \frac{dR}{d^3 \vec{k}}^{\text{EM}}
$$

\n
$$
E_k \frac{dR}{d^3 \vec{k}}^{\text{EM}} \sim C \alpha_s \alpha_{\text{EM}} \mathcal{IL}_c \sum_a \delta f_{a,\text{EM}}^{(1)}(X, k)
$$

\nWe focus on effect of EM dissipation
\nWe neglect viscous dissipation effect

P_T Spectra of Direct Photon

$$
E_k\frac{d{\cal R}}{d^3\vec{k}}^{\text{EM}}\sim C\alpha_s\alpha_{\text{EM}}{\cal I}{\cal L}_c\sum_a\delta f^{(1)}_{a,\text{EM}}(X,k)
$$

From Lattice QCD $[fm^{-1}]$

Small contribution to P _T spectra

Elliptic Flow of Direct Photon

Large enhancement is observed.

C. NONAKA

 $v_2(\gamma)\equiv \frac{v_0v_2+v_0^{\rm EM}v_2^{\rm EM}}{v_0+v_0^{\rm EM}}$

Since largest magnetic field has an elliptic orientation, a larger impact from the EM corrections on elliptic flow appears.

Summary

Electric conductivity of QCD Matter

- **Construction of RRMHD code in the Milne coordinate**
	- Test calculation in the $1+1$ expanding system

• **Application to high-energy heavy-ion collisions**

- Charge dependent flow
	- Au+Au and Au+Cu systems at RHIC energy
- Elliptic flow of photons

C. NONAKA

Event-by-event fluctuation Finite density Nuclear structure Ru+Ru, Zr+Zr Vortex Chiral magnetohydrodynamics **Future work:**

….

