Electric Conductivity of QCD Matter in High-Energy Heavy-Ion Collisions

Department of physics, Hiroshima University
International Institute for Sustainability with Knotted Chiral Meta Matter / SKCM².
Hiroshima University

Kobayashi Maskawa Institute, Nagoya University Department of Physics, Nagoya University

Chiho NONAKA

In collaboration with Nicholas J. Benoit, Kouki Nakamura, Takahiro Miyoshi and Hiroyuki Takahashi

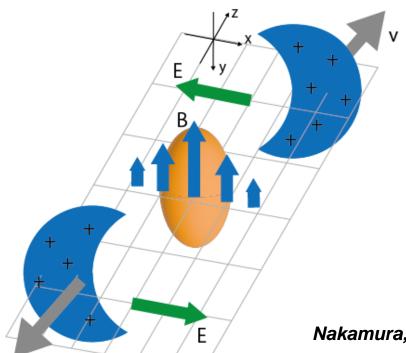
Contents

- Relativistic resistive magnetohydrodynamics (RRMHD)
 - Electromagnetic fields in high-energy heavy-ion collisions
- Electric conductivity of QCD matter in high-energy heavy-ion collisions
 - Charge dependent flow
 - Elliptic flow of photons
- Summary

Electromagnetic Field in Heavy Ion Collisions

Strong Electromagnetic field?

- Au + Au ($\sqrt{s_{NN}}=200~{
 m GeV}$) : $10^{14}~{
 m T}\sim 10~m_\pi^2$
- Pb + Pb $(\sqrt{s_{NN}} = 2.76 \text{ TeV}): 10^{15} \text{ T}$



Nakamura, Miyoshi, C. N. and Takahashi, Phys. Rev. C 107, (2023) 014901 Nakamura, Miyoshi, C. N. and Takahashi, Eur.Phys.J.C 83 (2023) 3, 229.

Nakamura, Miyoshi, C. N. and Takahashi, Phys. Rev. C 107 (2023) 3, 034912

Electromagnetic Field in Heavy-Ion Collisions

Electromagnetic field in heavy-ion collisions

- > Production of strong magnetic field
 - Au + Au ($\sqrt{s_{NN}} = 200 \text{ GeV}$) : $10^{14} \text{ T} \sim 10 m_{\pi}^2$ Pb + Pb ($\sqrt{s_{NN}} = 2.76 \text{ TeV}$) : 10^{15} T Not observed

■Response to electromagnetic field

- Electric conductivity
- Lattice QCD: $\sigma \sim 0.023 \, \mathrm{fm^{-1}} \, @ \, T \sim 250 \, \mathrm{MeV}$

Phys. Rev. Lett., 99:022002, 2007.

Experimental data?

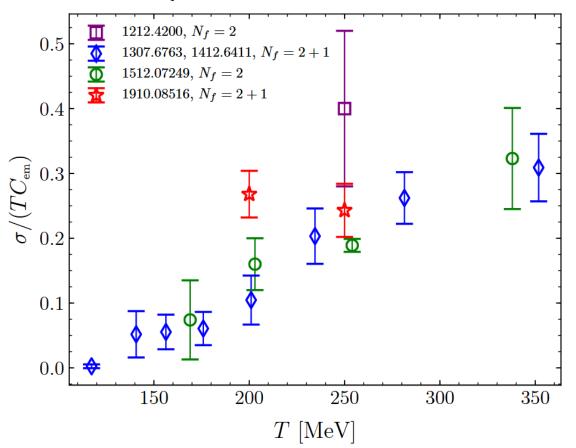
 \vec{B} : Magnetic field

 \vec{E} : Electric field

v: velocity

Electric Conductivity of QCD Matter

Lattice QCD



Electric Conductivity on the Lattice

$$\sigma = \frac{1}{6} \frac{\partial}{\omega} \left(\int d^4 x e^{i\omega t} \langle [j_{\mu}^{\text{em}}(t, x), j_{\mu}^{\text{em}}(0, 0)] \rangle \right) |_{\omega = 0}$$

Uses linear-response theory (Kubo formula)

Low energy limit of the electromagnetic spectral function

- Does not include external magnetic field effects
- Uses approximately realistic pion mass
- General agreement among results using a variety of methods and parameters

Aarts, Nikolaev, EPJ.A 57, 118 (2021); 2008.12326 [hep-lat]

Electromagnetic Field in Heavy-Ion Collisions

Electromagnetic field in heavy ion collisions

- > Production of strong magnetic field
 - Au + Au ($\sqrt{s_{NN}}=200~{\rm GeV}$) : $10^{14}~{\rm T}\sim 10~m_\pi^2$ Not observed

• Pb + Pb $(\sqrt{s_{NN}} = 2.76 \text{ TeV}) : 10^{15} \text{ T}$

■Response to electromagnetic field

Electric conductivity from lattice QCD

Experimental data?

• $\sigma \sim 0.023 \text{ fm}^{-1} @ T \sim 250 \text{ MeV}$

Phys. Rev. Lett., 99:022002, 2007.

ightharpoonup Magnetohydrodynamics $(\sigma \to \infty)$

Inghirami, et al, Eur. Phys. J. C (2020) 80:293

- Focus only on magnetic field
- Quantitative analysis on electric conductivity

Electric conductivity

experimental data

Relativistic Resistive Magnetohydrodynamics Reaction plane

 \vec{B} : Magnetic field

 \vec{E} : Electric field

v: velocity

Electromagnetic Fields and Property of QGP

Electric Conductivity

- Dissipation of electric field
 - Ampere's law : $\partial_t \vec{E} \nabla \times \vec{B} = -\vec{j}$

 \vec{B} : magnetic field \vec{E} : electric field

Ohm's law makes electric field dissipate → Dissipated energy to fluid

- Charge is induced.
 - Charge is induced by electric field.
 - Induced charge depends on charge conductivity
- Dissipation of magnetic field Charge conductivity of QGP

y [fm] Magnetic field $\sigma \neq 0$ Suppresses of dissipation Electric field is dissipated.

Electric field

0.01

0.001 0.0001

dissipation of electromagnetic fields and charge distribution QGP

Understanding of QGP Property

Charge conductivity of QGP from analysis of high-energy heavy-ion collisions

Physical property	Observables	Quantitative analysis
Charge conductivity	?	×
Shear viscosity	Azumithal anisotoropy v_n	\circ
Bulk viscosity	P_{T} distributions	\circ
Diffusion coefficient	Jet energy loss	0

Charge dependent directed flow

Asymmetic collisions → i.e., Hirono, Hongo, and Hirano, PRC 90, 021903 (2014).

Symmetric collisions

Proposed EM observables

Dileptons → i.e., Akamatsu, Hamagaki, Hatsuda, and Hirano, PRC 85, 054903 (2012). Photons → i.e., Sun and Yan, PRC 109, 034917 (2024).

Understanding of QGP Property

Charge conductivity of QGP from analysis of high-energy heavy-ion collisions

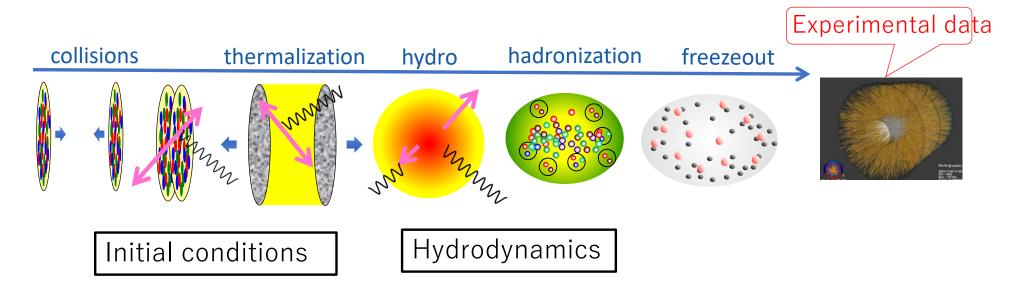
Construction of relativistic resistive magnetohydrodynamics

Physical property	Observables	Quantitative analysis
Charge conductivity	?	×
Shear viscosity	Azumithal anisotoropy v_n	
Bulk viscosity	P_{T} distributions	\circ
Diffusion coefficient	Jet energy loss	0

Relativistic Resistive Magnetohydrodynamics

Relativistic Resistive

Nakamura, Miyoshi, CN and Takahashi, PRC107, no.1, 014901 (2023)



Glauber model +approximate solutions of Maxwell eq.

Hydrodynamic eq. + Maxwell eq. + Ohm's law $\partial_\mu T^{\mu\nu} = F^{\nu\lambda} J_\lambda \quad J^\mu = \sigma e^\mu$

Relativistic Resistive Magneto-Hydrodynamics (RRMHD)

Nakamura, Miyoshi, CN and Takahashi, PRC107, no.1, 014901 (2023)

■ RRMHD equation

➤ Conservation law + Maxwell eq. + Ohm's law $\partial_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda}$

$$J^{\mu} = J^{\mu}_{c} + qu^{\mu}$$

$$\partial_t \varepsilon + \nabla \cdot m = 0$$

Momentum conservation

$$\partial_t m^i + \nabla \cdot \Pi^i = 0$$

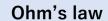
Faraday's law

$$\partial_t \vec{B} + \nabla \times \vec{E} = 0$$

p: pressure

$$p_{em} = (E^2 + B^2)/2$$

$$\begin{split} \varepsilon &= (e+p)\gamma^2 - p + p_{em} \\ m^i &= (e+p)\gamma^2 v^i + \epsilon^{ijk} B_j E_k \\ \Pi^{ij} &= (e+p)\gamma^2 v^i v^j + (p+p_{em}) g^{ij} - E^i E^j - B^i B^j \end{split}$$



$$\vec{J} = q\vec{v} + \sigma\gamma[\vec{E} + \vec{v} \times \vec{B} - (\vec{v} \cdot \vec{E})\vec{v}]$$

Ampere's law
$$=: \vec{J}_c \\ \partial_t \vec{E} - \nabla \times \vec{B} = \vec{Q} \vec{v} \\ \partial_t \vec{E} = \vec{J}_c$$
 operator splitting

· Integration with quasi-analytic solutions

$$\vec{E}_{\perp} = -\vec{v} \times \vec{B} + (E_{\perp}^{0} + \vec{v} \times \vec{B}) \exp(-\sigma \gamma t)$$

$$\vec{E}_{\parallel} = E_{\parallel}^{0} \exp(-\sigma t/\gamma)$$

Komissarov, Mon. Not. R. Astron. Soc. 382, 995-1004 (2007)

RRMHD Equation in Milne Coordinates

New

Milne coordinates

$$\tau = \sqrt{t^2 - z^2}$$

$$\eta_s = \frac{1}{2} \ln \frac{t + z}{t - z}$$

- Expanding systems in the longitudinal direction (au, x, y, η_s)
 - Strong expansion in the longitudinal direction is effectively included.
 - Number of grid of fluid is saved.

RRMHD Equation

$$U = \begin{pmatrix} D \\ m_j \\ \varepsilon \\ B^j \\ E^j \\ q \end{pmatrix}, F^i = \begin{pmatrix} Dv^i \\ \Pi^{ji} \\ m^i \\ \varepsilon^{jik}E_k \\ \varepsilon^{jik}B_k \\ J^i \end{pmatrix}, S = \begin{pmatrix} 0 \\ \frac{1}{2}T^{ik}\partial_jg_{ik} \\ -\frac{1}{2}T^{ik}\partial_0g_{ik} \\ 0 \\ J^i_c \\ 0 \end{pmatrix}$$

The first RRMHD code in Milne coordinates

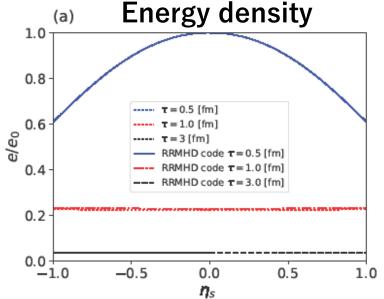
Validation of the Code

RRMHD in the Milne coordinates

Nakamura, Miyoshi, CN and Takahashi, Eur.Phys.J.C 83 (2023) 3, 229.

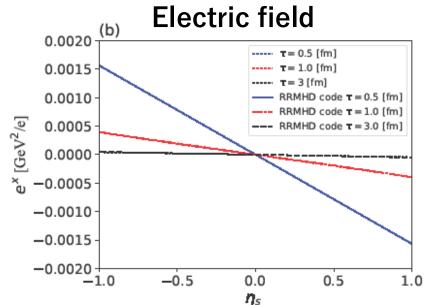
New Test Problem

- (1+1) dimensional expansion system $u^{\mu} = (\cosh Y, 0, 0, \sinh Y)$
 - Comparison between quasi-analytical solution and RRMHD simulation



Solid line : RRMHD code

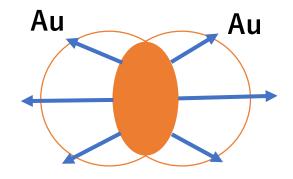
Dashed line: quasi-analytical solution



→ Application to Heavy Ion Collisions

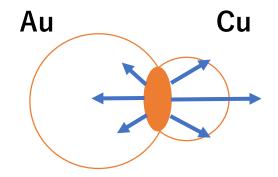
Symmetric and Asymmetric Systems

■Au-Au collisions



- > Symmetric pressure gradient
- > Almond-shaped medium

■Cu-Au collisions



- > Asymmetric pressure gradient
- > Distorted Almond-shaped medium

Hirono, Hongo, Hirano

Analysis on High-Energy Heavy-Ion Collisions

• Directed flow v_1

 $\langle \cdot \rangle$: average over yield

$$v_1 \coloneqq \langle \cos(\phi - \Psi_1) \rangle \sim \langle \frac{p_x}{\sqrt{p_x^2 + p_y^2}} \rangle$$

 Ψ_1 :angle between \overrightarrow{b} and x axis

• Elliptic flow v_2

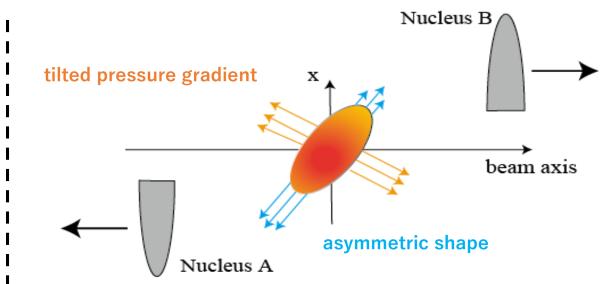
$$v_2 \coloneqq \langle \cos(2\phi - \Psi_2) \rangle \sim \langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \rangle \longrightarrow$$

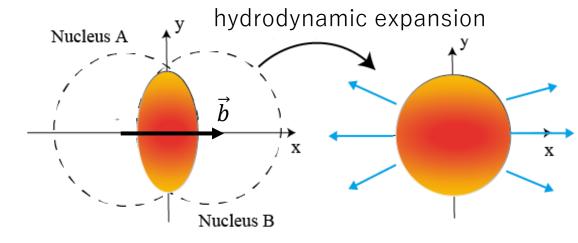
 Ψ_2 :angle between b and x axis

Charge dependence

$$\Delta v_1 = v_1^{\pi^+} - v_1^{\pi^-}$$

$$\Delta v_2 = v_2^{\pi^+} - v_2^{\pi^-}$$





Initial Condition: QGP Medium

■ Tilted Glauber model

 n_p : number of participants n_c : number of collisions

Bozek, et al, Phys. Rev. C 81, 054902(2010)

Freezeout hypersurface

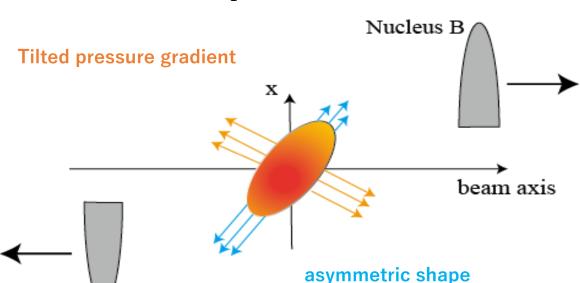
Energy density

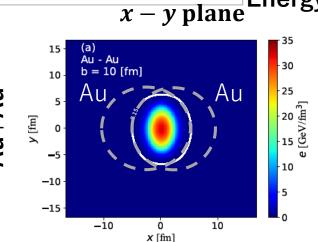
• Energy density is scaled by n_n and n_c

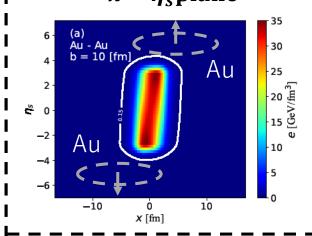
Tilted distribution in the longitudinal direction,

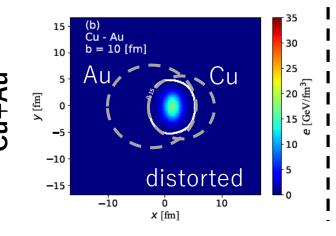
For directed flow v_1

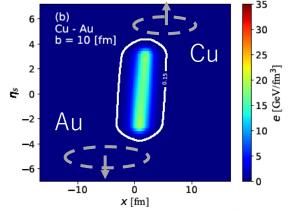
Nucleus A











Initial Condition: Electromagnetic Fields

■Asymptotic solution of Maxwell eq.

➤ Electromagnetic field made by point charge moving in the longitudinal axis

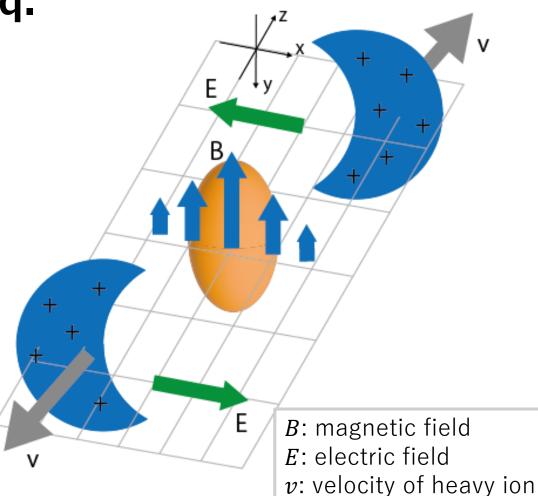
- Proton distribution in nucleus : uniform sphere
- Constant charge conductivity ($\sigma = 0.023 \text{ fm}^{-1}$)

$$\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t},$$

$$\nabla \cdot \boldsymbol{D} = e\delta(z - vt)\delta(\boldsymbol{b}),$$

$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \sigma \boldsymbol{E} + ev\hat{\boldsymbol{z}}\delta(z - vt)\delta(\boldsymbol{b})$$

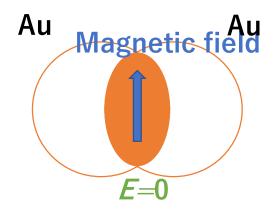
Integration of the asymptotic solutions over the charge distribution inside of nucleus



Tuchin, Phys. Rev. C88, 024911 (2013)

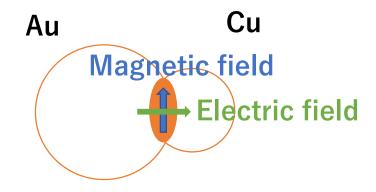
Electromagnetic Field in Symmetric and Asymmetric Systems

■Au-Au collisions



- ➤ Magnetic field
 - Strong magnetic field
- ➤ Electric field
 - No electric field

■Cu-Au collisions



- ➤ Magnetic field
 - Strong magnetic field
- ➤ Electric field
 - $E \neq 0$ due to the asymmetry of the charge distribution

Hirono, Hongo, Hirano

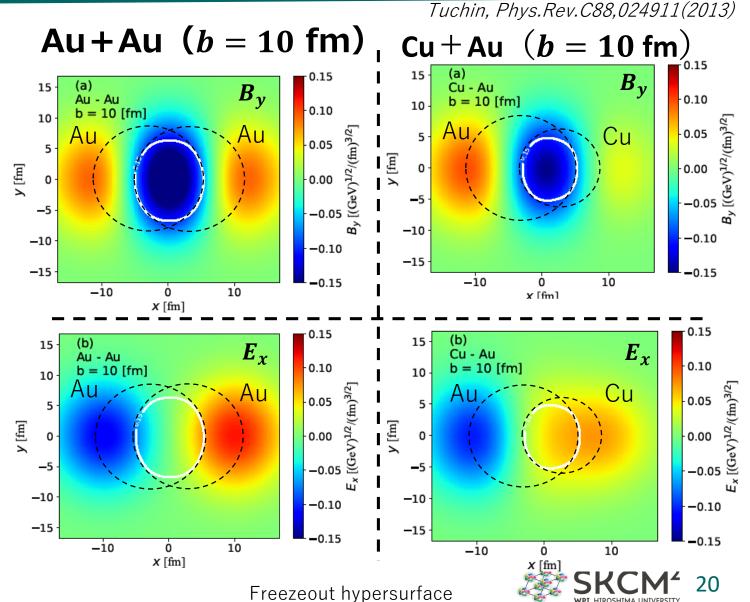
Initial Condition: Electromagnetic Fields ($\eta_s=0$)

■Au+Au

- ➤ Strong magnetic fields in QGP
- ightharpoonup Electric field ~ 0 in QGP

■Cu+Au

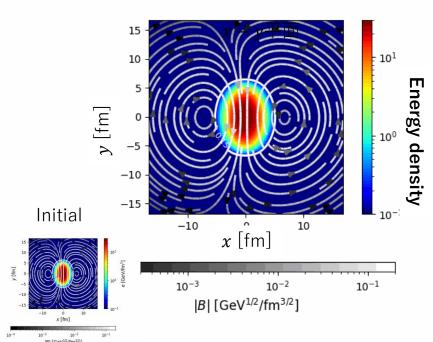
- ➤ Strong magnetic field in QGP
- ➤ Finite electric field in QGP



Space-time Evolution

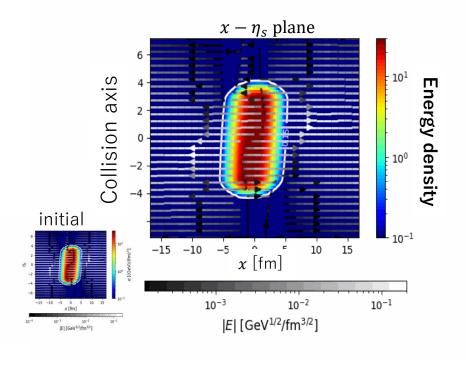
Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

Au+Au collision system



Magnetic field strength

First calculation in HIC with RRMHD code



Electric field strength

Analysis of Heavy Ion Collisions

Charge Dependent Flow

Directed Flow

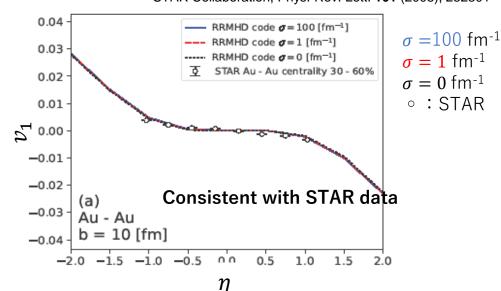
•
$$v_1 \coloneqq \langle \cos(\phi - \Psi_1) \rangle \sim \langle \frac{p_x}{p_T} \rangle$$

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

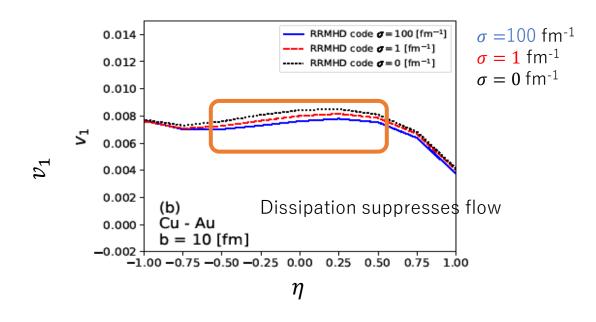
$$\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}$$

- ightharpoonup Au-Au collisions ($\sqrt{s_{NN}} = 200 \text{ GeV}$)
 - Parameter fixed in initial condition from comparison with STAR data

STAR Collaboration, Phys. Rev. Lett. 101 (2008), 252301



- ightharpoonup Cu-Au collisions $(\sqrt{s_{NN}} = 200 \text{ GeV})$
 - Decreases with conductivity
 - Dissipation suppresses flow in the Cu direction



Energy Transfer by Ohm Dissipation

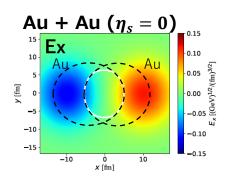
Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

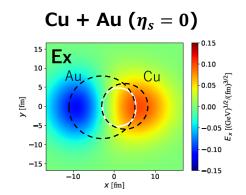
Energy Transfer

$$D(u) := j^{\mu}e_{\mu} = \gamma[j \cdot (E + v \times B) - q(v \cdot E)]$$

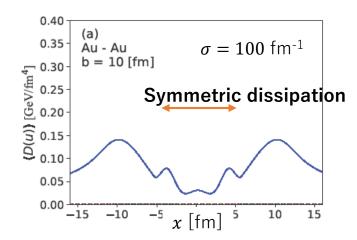
energy of the electromagnetic field

Thermal energy
Kinetic energy



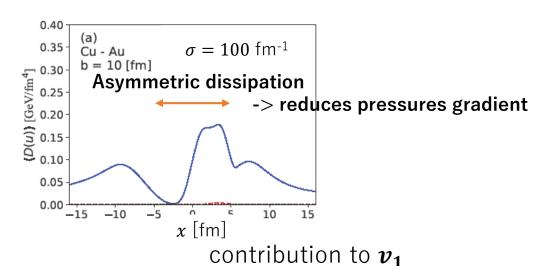


Au+Au collisions



no contribution to v_1

Cu+Au collisions



Directed Flow

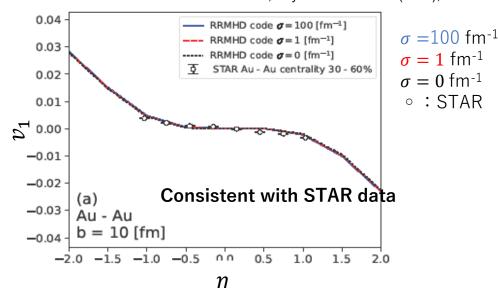
•
$$v_1 \coloneqq \langle \cos(\phi - \Psi_1) \rangle \sim \langle \frac{p_x}{p_T} \rangle$$

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

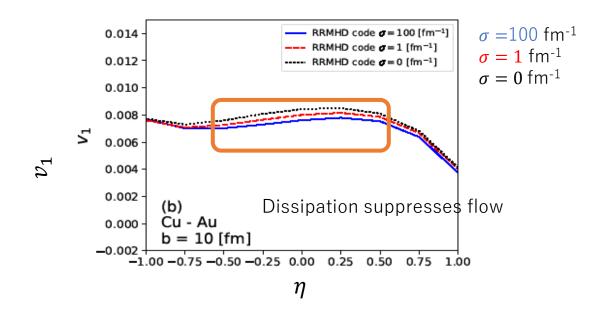
$$\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}$$

- ightharpoonup Au-Au collisions ($\sqrt{s_{NN}} = 200 \text{ GeV}$)
 - Parameter fixed in initial condition from comparison with STAR data

STAR Collaboration, Phys. Rev. Lett. 101 (2008), 252301



- ightharpoonup Cu-Au collisions $(\sqrt{s_{NN}} = 200 \text{ GeV})$
 - Decreases with conductivity
 - Dissipation suppresses flow in the Cu direction

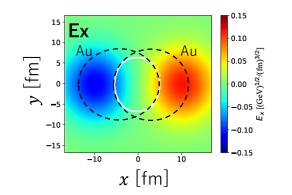


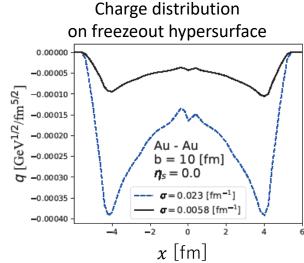
Charge Dependence of Δv_2 : Au + Au

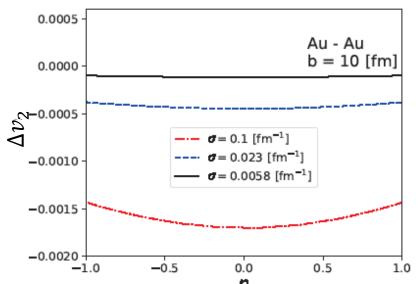
•
$$\Delta v_2 = v_2^{\pi^+}(\eta) - v_2^{\pi^-}(\eta)$$

Negative Elliptic Flow

- Contribution of negative charge on freezeout hypersurface
- Symmetric structure: initial electric field to the collision axis
- Electric conductivity
 dependence is observed even
 [∞]
 in the symmetry system.







$$\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}$$

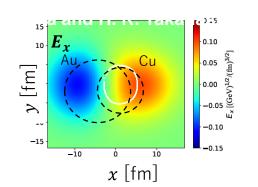
Charge Dependence of Δv_2 : Cu + Au

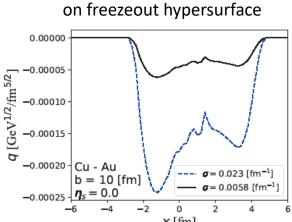
Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

•
$$\Delta v_2 = v_2^{\pi^+}(\eta) - v_2^{\pi^-}(\eta)$$

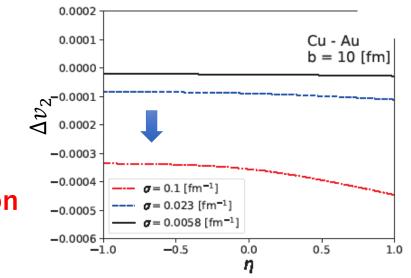
- Negative Elliptic Flow
 - Contribution of negative charge on freezeout hypersurface
 - Asymmetric structure: initial electric field to the collision axis
 - Electric conductivity dependence is observed.

∆V₂: initial electromagnetic field distribution electrical conductivity





Charge distribution



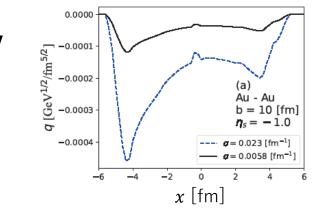
$$\sigma=0.0058~\mathrm{fm^{-1}}$$

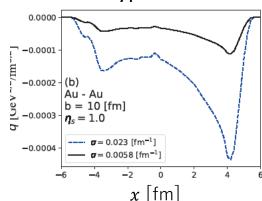
$$\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}$$

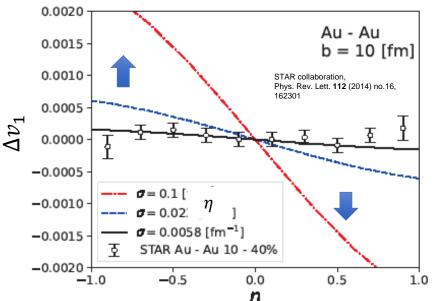
Charge Dependence of Δv_1 : Au + Au

- $\Delta v_1 = v_1^{\pi^+}(\eta) v_1^{\pi^-}(\eta)$
 - Clear dependence of charge conductivity
 - Proportion to electric conductivity
 - Negative charge induced in the opposite direction of fluid flow suppression of v_1 of negative charge
 - Δv_1 with finite σ is consistent with STAR data
 - $\sigma=0.0058~{\rm fm^{-1}}$ ex. $\sigma_{LQCD}=0.023~{\rm fm^{-1}}$ from lattice QCD Gert Aarts, et al. Phys. Rev. Lett., 99:022002, 2007.
 - ✓ QGP electrical conductivity from high-precision measurement of Δv_1

Charge distribution on freezeout hypersurface







$$\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}$$

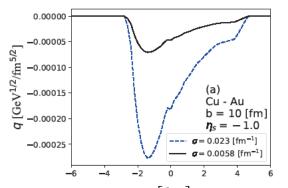
Charge Dependence of Δv_1 : Cu + Au

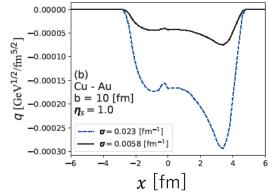
Nakamura, Miyoshi, CN and Takahashi, Phys. Rev. C 107 (2023) 3, 034912

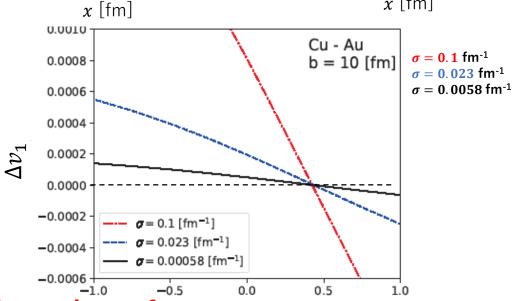
Charge distribution on freezeout hypersurface

•
$$\Delta v_1 = v_1^{\pi^+}(\eta) - v_1^{\pi^-}(\eta)$$

- Electric field created by initial condition
 - Δv_1 is finite at $\eta = 0$
 - Asymmetry structure to $\eta = 0$
- Proportion to electric conductivity
 - $\Delta \nu_1$ vanishes at $\eta = 0.5$.
- ✓ Electrical conductivity <- Δv_1 at $\eta=0$
- \checkmark Initial electrical field from η dependence of $\varDelta v_1$







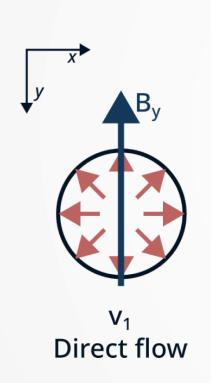
Asymmetric system has advantage in explore of QGP electrical conductivity.

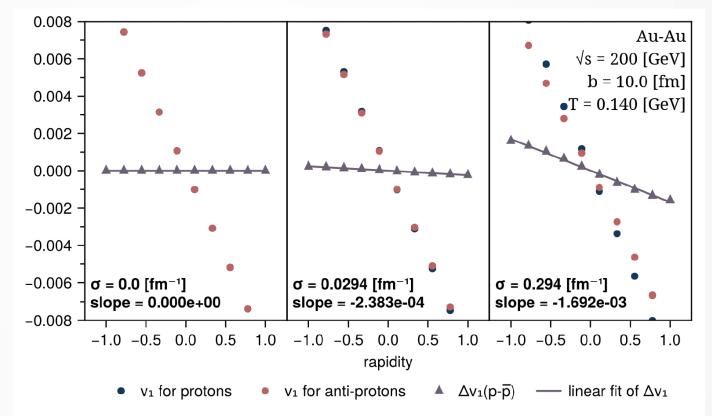
Comparison with STAR Data

Benoit , Miyoshi, CN , Sakai and Takahashi, in preparation

What RRMHD says about recent experimental result

Our RRMHD model can reproduce the STAR experiment behavior





Benoit , Miyoshi, CN , Sakai and Takahashi, in preparation

Nicholas J. Benoit

Benoit

Electromagnetic fields inside QGP

EM fields penetrating QGP drive charge carriers out-of-equilibrium

$$J^{\mu} = qu^{\mu} + \sigma F^{\mu\nu} u_{\nu}$$

First order dissipation from the EM fields

Taking the Boltzmann equation in the relaxation time application

$$k^{\mu}\partial_{\mu}f_{a}+eQ_{a}F^{\mu\nu}k_{\mu}\frac{\partial f_{a}}{\partial k^{\nu}}=-\frac{k^{\mu}u_{\mu}}{\tau_{R}}\delta f_{a,EM}^{(n)}$$
 Sun and Yan, PRC 109, 034917 (2024).

Vlasov term for the external EM fields

Order "n" corrections to the quark distribution function

Benoit

Electromagnetic fields inside QGP

1st order corrections

$$k^{\mu}\partial_{\mu}f_{a}+eQ_{a}F^{\mu\nu}k_{\mu}rac{\partial f_{a}}{\partial k^{
u}}=-rac{k^{\mu}u_{\mu}}{ au_{R}}\delta f_{a,EM}^{(n)}$$
 Sun and Yan, PRC 109, 034917 (2024).
$$f_{a}=f_{a,eq}+\delta f_{a,EM}^{(1)}+\delta f_{a,EM}^{(2)}+\delta f_{a,EM}^{(3)}+\cdots$$

$$\delta f_{a,EM}^{(1)}(X,k) = -\frac{-f_{a,eq}(1 - f_{a,eq})}{T\chi_{el}k^{\mu}u_{\mu}} e\underline{\sigma}Q_{a}\underline{e}^{\mu}k_{\mu}$$

Electric conductivity of QGP from Landau matching with the current

EM fields in the fluid rest frame

$$e^{\mu} = (\gamma v_k E^k, \gamma E^i + \gamma \epsilon^{ijk} v_j B_k)$$

Benoit

Electromagnetic fields inside QGP

• The fluid + EM field contributions from hydrodynamics

Temperature and four velocity

$$\delta f_{a,EM}^{(1)}(X,k) = -\frac{-f_{a,eq}(1 - f_{a,eq})}{T\chi_{el}k^{\mu}u_{\mu}}e\sigma Q_{a}e^{\mu}k_{\mu}$$

Electric susceptibility of QGP

$$\chi_{a,el} = -\frac{1}{3} \int \frac{d\vec{p}}{(2\pi)^3 E_p} (p^{\sigma} p^{\nu} \Delta_{\sigma\nu}) \frac{-f_{a,eq} (1 - f_{a,eq})}{p^{\mu} u_{\mu}}$$

Spacetime dependent EM fields in QGP medium

$$e^{\mu} = (\gamma v_k E^k, \gamma E^i + \gamma \epsilon^{ijk} v_j B_k)$$

Benoit

Electromagnetic fields inside QGP

- The fluid + EM field contributions from hydrodynamics
- All of those values can be calculated self-consistently using relativistic resistive magneto-hydrodynamics (RRHMD)

Temperature and four velocity

$$\delta f_{a,EM}^{(1)}(X,k) = -\frac{-f_{a,eq}(1 - f_{a,eq})}{T\chi_{el}k^{\mu}u_{\mu}}e\sigma Q_{a}e^{\mu}k_{\mu}$$

Electric susceptibility of QGP

$$\chi_{a,el} = -\frac{1}{3} \int \frac{d\vec{p}}{(2\pi)^3 E_p} (p^{\sigma} p^{\nu} \Delta_{\sigma\nu}) \frac{-f_{a,eq} (1 - f_{a,eq})}{p^{\mu} u_{\mu}}$$

Spacetime dependent EM fields in QGP medium

$$e^{\mu} = (\gamma v_k E^k, \gamma E^i + \gamma \epsilon^{ijk} v_j B_k)$$

Photon production from QGP and EM fields

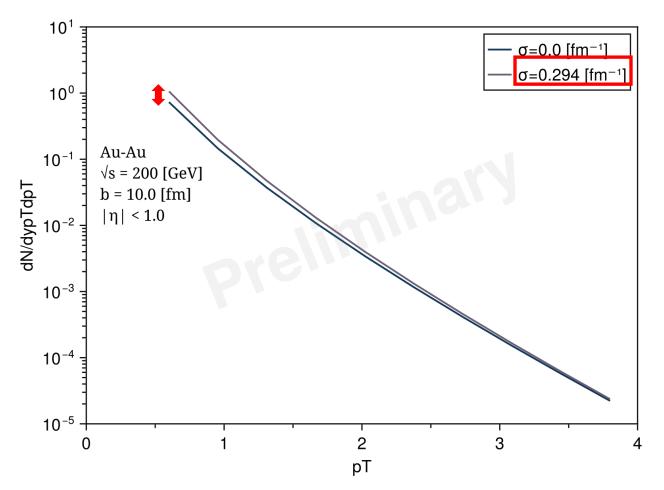
Rate of QGP photon production should be increased by the EM fields

$$E_k \frac{d\mathcal{R}}{d^3 \vec{k}} = E_k \frac{d\mathcal{R}}{d^3 \vec{k}}^{\text{QGP}} + E_k \frac{d\mathcal{R}}{d^3 \vec{k}}^{\text{EM}}$$

$$E_k \frac{d\mathcal{R}}{d^3 \vec{k}}^{\text{EM}} \sim C \alpha_s \alpha_{\text{EM}} \mathcal{IL}_c \sum_a \delta f_{a,\text{EM}}^{(1)}(X,k)$$
We focus on effect of EM dissipation

We neglect viscous dissipation effect

P_T Spectra of Direct Photon

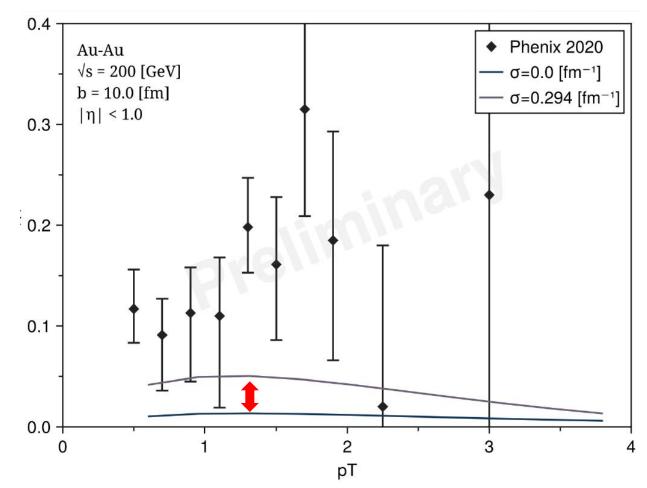


$$E_k \frac{d\mathcal{R}}{d^3 \vec{k}}^{\text{EM}} \sim C \alpha_s \alpha_{\text{EM}} \mathcal{I} \mathcal{L}_c \sum_a \delta f_{a,\text{EM}}^{(1)}(X,k)$$

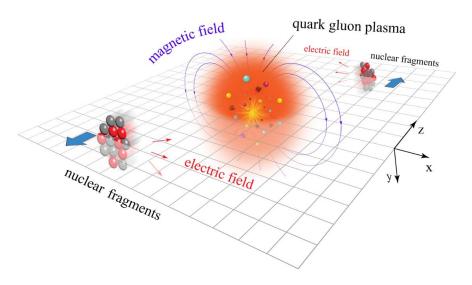
From Lattice QCD $\sigma = 0.029 \ [\text{fm}^{\text{--}1}]$

Small contribution to P_{T} spectra

Elliptic Flow of Direct Photon



$$v_2(\gamma) \equiv \frac{v_0 v_2 + v_0^{\text{EM}} v_2^{\text{EM}}}{v_0 + v_0^{\text{EM}}}$$

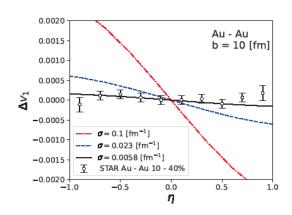


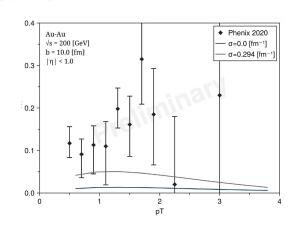
Since largest magnetic field has an elliptic orientation, a larger impact from the EM corrections on elliptic flow appears.

Summary

Electric conductivity of QCD Matter

- Construction of RRMHD code in the Milne coordinate
 - Test calculation in the 1+1 expanding system
- Application to high-energy heavy-ion collisions
 - Charge dependent flow
 - Au+Au and Au+Cu systems at RHIC energy
 - Elliptic flow of photons





Future work:

Event-by-event fluctuation

Finite density

Nuclear structure Ru+Ru, Zr+Zr

Vortex

Chiral magnetohydrodynamics

