

Strong-field induced reaction in UPC

Jie Zhao Oct. 19, 2024

Base on Wangmei, Shuai, Chi's work

The giant electromagnetic field in HIC

Physics Today **70**, 10, 40 (2017)

Clouds of quasi-real photons being present with heavy nuclei

$$n(\omega, r_{\perp}) = \frac{4Z^{2}\alpha}{\omega} \left| \int \frac{\vec{q}_{\perp}}{(2\pi)^{2}} \vec{q}_{\perp} \frac{f(\vec{q})}{q^{2}} e^{i\vec{q}_{\perp} \cdot \vec{r}_{\perp}} \right|^{2}$$
Equivalent Photon
$$\vec{q} = \left(\vec{q}_{\perp}, \frac{\omega}{\gamma}\right)$$
Approximation

The collisions of the EM. field

Electromagnetic interaction

interactions

interactions

PRC 89 (2014) 014906

The abundant photon induced reactions

UPC related physics П The physics of photoproduction

collider		RHIC	RHIC	LHC
species		Au+Au	U+U	Pb+Pb
$\sqrt{s_{NN}}$	GeV	200	192.8	5520
BFPP	b	117	329	272
single EMD	b	94.15	150.1	215
$mutual \ EMD$	b	3.79	7.59	6.2
nuclear	b	7.31	8.2	7.9
total	b	218.46	487.3	494.9

Hanzhou

STAR detector

Time Projection Chamber: tracking and particle identification within |η|<1
 Time Of Flight: multiplicity trigger, particle identification and pile-up track removal
 Barrel ElectroMagnetic Calorimeter: topology trigger and pile-up track removal
 Beam-Beam Counters: scintillator counters within 2.1<|η|<5.2, forward veto
 Zero Degree Calorimeters: detection of very forward neutrons, |η| > 6.6

The collisions of two photons

Observation of Breit-Wheeler process

STAR, PRL 127 (2021) 052302

Photon

Gold nucleus

Photon

MCD

Data : 0.261 ± 0.004 (stat.) \pm 0.013 (sys.) \pm 0.034 (scale) mb

STARLightgEPAQED0.22 mb0.26 mb0.26 mb

Consistent with theoretical calculations with $\pm 1\sigma$ level!

The Simplest process to convert energy to matter Wangmei, Shuai, Chi et.al's work

J. Zhao

Observation of Breit-Wheeler process

STAR, PRL 127 (2021) 052302

Photon

Gold nucleus

Photon

The Simplest process to convert energy to matter

J. Zhao

p-pbar pairs from QED vacuum excitation

Xin Wu' SQM2024

BW - the Simplest process to convert energy to matter

Dingyu, Wangmei, Shi et.al's calculation

$\lambda + \lambda \rightarrow h^+ + h^-$ higher excitation of the QED vacuum

First observation of vacuum excitation leading to the production of the simplest atomic nucleus.

Observation of the linear polarization

STAR, PRL 127 (2021) 052302

	Ultra-Peripheral				
Quantity	Measured	QED	χ^2/ndf		
$-A_{4\Delta\phi}(\%)$	16.8 ± 2.5	16.5	18.8 / 16		
	Peripheral (60-80%)				
	Peripher	al (60-	-80%)		
Quantity	Measured	QED	-80%) $\chi^2/{\rm ndf}$		

C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)

The photons are linearly polarized!

Hanzhou

Observation in hadronic HIC

STAR, PRL 121 (2018) 132301

hadronic heavy-ion collisions!

PLB 781 (2018) 182

Novel probe for QGP?

The transverse momentum broadening

Possible medium effects --- magnetic field trapped in the QGP?

Hanzhou

The impact parameter dependence

PLB 800 (2020) 135089

CMS, PRL 127 (2021) 122001

arXiv:2006.07365

The "broadening" mainly originates from the lack of impact parameter dependence in traditional EPA approaches.

浦实,肖博文,周剑,周雅瑾; Acta Phys. Sin. 72 (2023) 072503

Hanzhou

The room for QGP effect

J.D. Brandenburg etal., Rep. Prog. Phys. 86 (2023) 083901

Push for more precise multi-differential measurements

Collisions between photons and nuclei

The double slits interference

PRD 103 (2021), 033007

Decay along the impact parameter

$$\frac{d^2 N}{d\cos\theta d\phi} = \frac{3}{8\pi} \sin^2\theta [1 + \cos 2(\phi - \Phi)]$$

Hanzhou

The double slits interference

STAR, Sci. Adv. 9 (2023) eabq3903

В

 $2 \langle \cos(2\phi) \rangle$

0.2

Significant difference between Au and U

0 0.05 0.1 0.15 0.2 0.25 P_T (GeV) [1] Xing, H et.al. J. High Ener. Phys. **2020**, 64 (2020). [2] Zha, W., JDB, Ruan, L. & Tang, Z. Phys. Rev. D **103**, 033007 (2021)

STAR Signal $\pi^+\pi^-$ pairs vs. Models

Au+Au <mark>√s_{NN}</mark>=200 GeV

Model I: R=6.38 fm, a=0.535 fm

Model II: R=6.9 fm, a=0.535 fm

Sensitive to the nuclear geometry/gluon distribution

The double slits interference

STAR, Sci. Adv. 9 (2023) eabq3903

В

 $2 \langle \cos(2\phi) \rangle$

0.2

0

0.05

Example of EPR paradox

Figure from Zhangbu

```
The life time \rho:{\sim}1\,\text{fm/c}
```

b~20fm

[1] Xing, H et.al. J. High Ener. Phys. 2020, 64 (2020).
[2] Zha, W., JDB, Ruan, L. & Tang, Z. Phys. Rev. D 103, 033007 (2021)

STAR Signal $\pi^+\pi^-$ pairs vs. Models

0.1

Au+Au <mark>√s_{NN}</mark>=200 GeV

Model I: R=6.38 fm, a=0.535 fm

Model II: R=6.9 fm, a=0.535 fm

0.15

0.2

 P_{T} (GeV)

Sensitive to the nuclear geometry / gluon distribution

0.25

Application: Align the reaction plane

Xin Wu, Xinbai Li, Zebo Tang, Pengfei Wang, Wangmei Zha, PRR 4, L042048 (2022)

Could directly link the final flow to initial geometry!

Application: Align the reaction plane

Jie Zhao, Jinhui Chen, Xu-Guang Huang, Yu-Gang Ma, NST, 35, 20 (2024)

nuclear excitation

- ρ production with nuclear excitation, giant dipole resonance (GDRs)
- back-to-back correlation in the emitted neutrons from GDRs
- Which provide an unique way to measure global variables in UPC. such as flow and polarization

Application: Tomography

> Diffractive ρ^0 meson production to measure the nuclear structure.

the slopes of the diffraction patterns measure directly the nuclear density distribution. For example, at t->0, the diffraction pattern behaves as e^{-at}, where a is a measure of the nuclear size.

Charge radius

R. Hofstadter, Rev. Mod. Phys. 28 214-254 (1956)

G.F. Chew, et.al, Phys. Rev. 106, 1345 (1957); R.A. Schrack, et.al, Phys. Rev. 127, 1772 (1962);

Electron scattering measures the form factor, charge radius

Hanzhou

Strong-Interaction Nuclear Radii

G.F. Chew, et.al, Phys. Rev. 106, 1345 (1957); R.A. Schrack, et.al, Phys. Rev. 127, 1772 (1962);
C.M. Tarbert, et.al, Phys. Rev. Lett. 112, 242502 (2014)
F. Bulos, et.al, Phys. Rev. Lett. 22, 490 (1969); L.J. Lanzerotti, et.al, Phys. Rev. 166, 1365 (1968)
H. Alvensleben et.al, Phys. Rev. Lett. 24, 786 and 792 (1970)

- Electron scattering measures the form factor, charge radius
- > Photoproduction of π^0 meson: $\Delta(1232)$, the mass radius (1960s)
- > Photoproduction of ρ^0 meson:

"Determination of Strong-Interaction Nuclear Radii" (1970s)

Isobaric Ru and Zr nuclear structure

STAR, Phys. Rev. C 105 (2022), 014901 T. Prithwish (for STAR), QM2022

TAR

STAR, Sci. Adv. 9 (2023) 1

Tomography of ultra-relativistic nuclei with polarized photon-gluon collisions.

> The γ -A interaction may help to understand the structure of the isobar Ru and Zr nuclei ?

Spencer, et.al, PRC 60, 014903, (1999); STAR, PRL 89, 272302 (2002), PRC 96, 054904 (2017)

More and the production of ρ0 in isobar

Clear signal of coherent p0 production in isobar
 Diffraction pattern (minima) of the coherent p0 production

Ru and Zr nuclear structure

$$A^*e^{-b^*t}$$
, $(t \simeq -p_T^2)$

 Indication of larger Zr size than Ru from the γ-A interaction. The slope of the dN/dt ratio is 11.0+/- 2.9 +/- 0.3 (~3σ sigma effect)
 Interference and deformation effects need to be considered

Ru and Zr nuclear structure

W. Zhao QM2023

The vector meson produc2on in isobar UPCs is sensitive to the nuclear structures
 "By eyes", the ``full" Ru/Zr (case1/case5) is closest to data

Ru and Zr nuclear structure

Shuo Lin, Jin-Yu Hu, Hao-Jie Xu, Shi Pu, and Qun Wang, arXiv:2405.16491

The deformation effects can result in an approximate linear increase with q_T^2

This pattern aligns with the trends observed in experimental data.

Observation of Breit-Wheeler process -Linearly polarize photons -Impact parameter dependence The linearly polarized photon-gluon collisions -Double slits interference in polarization space -Align reaction plane -Tomography ... More coherent photon induced products