

Strong-field induced reaction in UPC

Jie Zhao Oct. 19, 2024

Base on Wangmei, Shuai, Chi's work

The giant electromagnetic field in HIC STAR

Physics Today **70**, 10, 40 (2017)

Clouds of quasi-real photons being present with heavy nuclei

$$
n(\omega, r_{\perp}) = \frac{4Z^2 \alpha}{\omega} \left| \int \frac{\vec{q}_{\perp}}{(2\pi)^2} \vec{q}_{\perp} \frac{f(\vec{q})}{q^2} e^{i\vec{q}_{\perp} \cdot r_{\perp}^2} \right|^2
$$
 Equivalent Photon
Approximation
Approximation

The collisions of the EM. field

Electromagnetic interaction

interactions

interactions

PRC 89 (2014) 014906

The abundant photon induced reactions

UPC related physics $\mathbf{\mathbf{H}}$ The physics of photoproduction

STAR detector

Ø Time Projection Chamber: tracking and particle identification within |η|<1 Ø Time Of Flight: multiplicity trigger, particle identification and pile-up track removal Barrel ElectroMagnetic Calorimeter: topology trigger and pile-up track removal Beam-Beam Counters: scintillator counters within 2.1<|η| < 5.2, forward veto Ø Zero Degree Calorimeters: detection of very forward neutrons, |η| > 6.6

The collisions of two photons

Observation of Breit-Wheeler process STAR

STAR, PRL 127 (2021) 052302

MCD

Data : 0.261 ± 0.004 (stat.) \pm 0.013 (sys.) ± 0.034 (scale) mb

STARLight gEPA QED 0.22 mb 0.26 mb 0.26 mb

Consistent with theoretical calculations with $\pm 1\sigma$ level!

The Simplest process to convert energy to matter Wangmei, Shuai, Chi et.al's work

Photon

Photon

Observation of Breit-Wheeler process

STAR, PRL 127 (2021) 052302

The Simplest process to convert energy to matter

Photon

Photon

p-pbar pairs from QED vacuum excitation

Xin Wu' SQM2024

BW - the Simplest process to convert energy to matter

Dingyu, Wangmei, Shi et.al's calculation

$\lambda + \lambda \rightarrow h^+ + h^-$ higher excitation of the QED vacuum

First observation of vacuum excitation leading to the production of the simplest atomic nucleus.

Observation of the linear polarization TAR

STAR, PRL 127 (2021) 052302

C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)

The photons are linearly polarized!

Observation in hadronic HIC

STAR, PRL **121** (2018) 132301

hadronic heavy-ion collisions!

PLB **781** (2018) 182

Novel probe for QGP?

The transverse momentum broadening STAR

Possible medium effects --- magnetic field trapped in the QGP?

Hanzhou *J. Zhao* 11

The impact parameter dependence STAR

PLB 800 (2020) 135089 CMS, PRL 127 (2021) 122001

arXiv:2006.07365

The "broadening" mainly originates from the lack of impact parameter dependence in traditional EPA approaches.

浦实,肖博文,周剑, 周雅瑾; **Acta Phys. Sin. 72 (2023) 072503**

The room for QGP effect

J.D. Brandenburg etal., Rep. Prog. Phys. **86** (2023) 083901

Push for more precise multi-differential measurements

STAR Collisions between photons and nuclei

The double slits interference

PRD 103 (2021), 033007

Linearly polarized photons

Decay along the impact parameter

$$
\frac{d^2N}{d\cos\theta d\phi} = \frac{3}{8\pi}\sin^2\theta[1+\cos 2(\phi-\Phi)]
$$

Hanzhou *J. Zhao* 15

The second order modulation

The double slits interference

STAR, Sci. Adv. 9 (2023) eabq3903

STAR Signal $\pi^*\pi^-$ pairs vs. Models B $2 \langle cos(2\phi) \rangle$ $-$ Au+Au γ $\overline{s_{NN}}$ =200 GeV Model I: R=6.38 fm, a=0.535 fm Model II: R=6.9 fm, a=0.535 fm 0.2 0.05 $\overline{0.1}$ 0.15 $\overline{0.2}$ 0.25 0 P_T (GeV)

[1] Xing, H et.al. J. High Ener. Phys. **2020**, 64 (2020). [2] Zha, W., JDB, Ruan, L. & Tang, Z. Phys. Rev. D **103**, 033007 (2021)

Sensitive to the nuclear geometry/gluon distribution

The double slits interference

STAR, Sci. Adv. **9** (2023) eabq3903

B

 $2 \langle cos(2\phi) \rangle$

 0.2

 Ω

Example of EPR paradox

Figure from Zhangbu

```
The life time \rho : \sim1fm/c
```
 $b \sim 20$ fm

[1] Xing, H et.al. J. High Ener. Phys. **2020**, 64 (2020). [2] Zha, W., JDB, Ruan, L. & Tang, Z. Phys. Rev. D **103**, 033007 (2021)

STAR Signal $\pi^+\pi^-$ pairs vs. Models

 $\overline{0.1}$

.

 0.05

<mark>-</mark> Au+Au ≬s_{NN}=200 GeV

Model I: R=6.38 fm, a=0.535 fm

Model II: R=6.9 fm, a=0.535 fm

 0.15

 $\overline{0.2}$

 P_T (GeV)

Sensitive to the nuclear geometry / gluon distribution

 0.25

Application: Align the reaction plane STAR

Xin Wu, Xinbai Li, Zebo Tang, Pengfei Wang, Wangmei Zha, PRR 4, L042048 (2022)

Could directly link the final flow to initial geometry!

Application: Align the reaction plane STAR

Jie Zhao, Jinhui Chen, Xu-Guang Huang, Yu-Gang Ma, NST, 35, 20 (2024)

nuclear excitation

- \triangleright p production with nuclear excitation, giant dipole resonance (GDRs)
- \triangleright back-to-back correlation in the emitted neutrons from GDRs
- \triangleright Which provide an unique way to measure global variables in UPC. such as flow and polarization

Application: Tomography

 \triangleright Diffractive ρ^0 meson production to measure the nuclear structure.

the slopes of the diffraction patterns measure directly the nuclear density distribution. For example, at t- >0 , the diffraction pattern behaves as e^{-at} , where a is a measure of the nuclear size.

Charge radius

R. Hofstadter, Rev. Mod. Phys. 28 214-254 (1956)

G.F. Chew, et.al, Phys. Rev. 106, 1345 (1957); R.A. Schrack, et.al, Phys. Rev. 127, 1772 (1962);

\triangleright Electron scattering measures the form factor, charge radius

Strong-Interaction Nuclear Radii

G.F. Chew, et.al, Phys. Rev. 106, 1345 (1957); R.A. Schrack, et.al, Phys. Rev. 127, 1772 (1962); C.M. Tarbert, et.al, Phys. Rev. Lett. 112, 242502 (2014) F. Bulos, et.al, Phys. Rev. Lett. 22, 490 (1969); L.J. Lanzerotti, et.al, Phys. Rev. 166, 1365 (1968) H. Alvensleben et.al, Phys. Rev. Lett. 24, 786 and 792 (1970)

- \triangleright Electron scattering measures the form factor, charge radius
- \triangleright Photoproduction of π^0 meson: $\Delta(1232)$, the mass radius (1960s)
- \triangleright Photoproduction of ρ^0 meson:

"Determination of Strong-Interaction Nuclear Radii" (1970s)

Isobaric Ru and Zr nuclear structure

STAR, Phys. Rev. C 105 (2022), 014901 STAR, Sci. Adv. 9 (2023) 1 T. Prithwish (for STAR), QM2022

STAR

Tomography of ultra-relativistic nuclei with polarized photon-gluon collisions.

The γ -A interaction may help to understand the structure of the isobar Ru and Zr nuclei ?

Spencer, et.al, PRC 60, 014903, (1999); STAR, PRL 89, 272302 (2002), PRC 96, 054904 (2017)

Diffractive photoproduction of ρ0 in isobar STAR

Clear signal of coherent *p*0 production in isobar Ø Diffraction pattern (minima) of the coherent ρ0 production

Ru and Zr nuclear structure TAR

$$
A^*e^{-b^*t} , \quad (t \simeq -p_T^2)
$$

 \triangleright Indication of larger Zr size than Ru from the y-A interaction. The slope of the dN/dt ratio is $11.0+/2.9+/-0.3$ (~ 3σ sigma effect) Interference and deformation effects need to be considered

Hanzhou *J. Zhao* 25

Ru and Zr nuclear structure TAR

W. Zhao QM2023

The vector meson produc2on in isobar UPCs is sensitive to the nuclear structures Ø "By eyes", the ``full'' Ru/Zr (case1/case5) is closest to data

Ru and Zr nuclear structure TAR

Shuo Lin,Jin-Yu Hu, Hao-Jie Xu,Shi Pu, and Qun Wang, arXiv:2405.16491

The deformation effects can result in an approximate linear increase with q_T^2

This pattern aligns with the trends observed in experimental data.

- Ø Observation of Breit-Wheeler process -Linearly polarize photons -Impact parameter dependence \triangleright The linearly polarized photon-gluon collisions -Double slits interference in polarization space -Align reaction plane -Tomography …
- Ø More coherent photon induced products