Hamiltonian lattice gauge theory: Application to nonequilibrium and dense QCD matter

Yoshimasa Hidaka (YITP)

Based on Hayata, YH, PRD 103 (2021) , 094502, JHEP 09 (2023) 123; JHEP 09 (2023) 126 Hayata, YH, Kikuchi PRD 104 (2021) 7, 074518 Hayata, YH, Nishimura, 2311.11643

Big Challenges in QCD

Manybody dynamics of QCD

Dense QCD

How is the quark gluon plasma created?

From BNL page

What phases are realized in the interior of a neutron star?

Difficulty

Sign problem: Difficulties in first-principles calculations based on importance sampling

$\langle O \rangle = \mathscr{D}A \det(D+m)e^{iS}O$

In real-time, finite-density problems, the weight is complex

Smaller systems can be simulated directly

Smaller systems can be simulated directly

Tensor Networks

Smaller systems can be simulated directly

Tensor Networks

Quantum simulation

Difficulty in Hamiltonian gauge theory

Infinite degrees of freedom Link variable is continuous (regularization required)

Large gauge redundancy $U \in SU(N)$ What approximation is continuous symmetry?

 $\dim \mathscr{H}_{\rm phys} \ll \dim \mathscr{H}_{\rm total}$ need to solve Gauss law constraint

• Formalism - Kogut-Susskind Hamiltonian formalism

• Application - Confinement-deconfinement phase transition in mean field approximation (JHEP 09 (2023) 123) - Thermalization on a small lattice (Phys. Rev. D 103, 094502(2021)) - QCD₂ at finite density (2311.11643) - Quantum Scar (JHEP 09 (2023) 126) - Scrambling (Phys. Rev. D 104 (2021) 7, 074518) Summary

• Formalism - Kogut-Susskind Hamiltonian formalism

Application - Confinement-deconfinement phase transition in mean field approximation (JHEP 09 (2023) 123) - Thermalization on a small lattice (Phys. Rev. D 103, 094502(2021)) QCD_2 at finite density (2311.11643) - Quantum Scar (JHEP 09 (2023) 126) - Scrambing (Phys. Rev. D 104 (2021) 7, 074518) Summary

Kogut-Susskind Hamiltonian formalism Kogut, Susskind ('75)

SU(N) gauge theory (Temporal gauge $A_0 = 0$) $[A_n^i(x), E_{mj}(x')] = i\delta_{nm}\delta_j^i\delta(x - x')$ **Commutation relation** Gauge field **Electric field** Hamiltonian $H = \int d^3x \left(\frac{g^2}{2}E^2(x) + \frac{1}{2g^2}B^2(x)\right)$

Magnetic field $B_l^i = \frac{1}{2} \epsilon_{lnm} (\partial_m A_n^i - \partial_m A_n^i + f_{jk}^i A_m^j A_n^k)$

Gauss law constraint $(D \cdot E)^i |\Psi_{phys}\rangle = 0$

Time is continuous, space is discretized

Kogut-Susskind Hamiltonian formalism Kogut, Susskind, Phys. Rev. D 11, 395 (1975)

> $e^{i \int A} \rightarrow U(e)$:Link variable $\in SU(N)$ on edge e $L_i(e), R_i(e)$: Left and right electric fields \in su(N)

Time is continuous, space is discretized

 $L_i(e)$ and $R_i(e)$ are not independent $[U_{adj}(e)]_{i}^{j}L_{j}(e) = R_{i}(e) \implies R_{i}^{2}(e) = L_{i}^{2}(e) =: E_{i}^{2}(e)$

Kogut-Susskind Hamiltonian formalism Kogut, Susskind, Phys. Rev. D 11, 395 (1975)

> $e^{i \int A} \rightarrow U(e)$:Link variable $\in SU(N)$ on edge e $L_i(e), R_i(e)$: Left and right electric fields \in su(N)

Commutation relation

$[A_n^i(x), E_{mj}(x')]$ = $i\delta_{nm}\delta_j^i\delta(x - x')$

Commutation relation

$[A_n^i(x), E_{mj}(x')] = i\delta_{nm}\delta_j^i\delta(x - x')$

 $[R_{i}(e), U(e')] = U(e)T_{i}\delta_{e,e'}$ $[L_{i}(e), U(e')] = T_{i}U(e)\delta_{e,e'}$ $[L_{i}(e), L_{j}(e')] = -if_{ij}^{k}L_{k}(e)\delta_{e,e'}$ $[R_{i}(e), R_{j}(e')] = if_{ij}^{k}R_{k}(e)\delta_{e,e'}$

Commutation relation

$[A_n^i(x), E_{mj}(x')]$ = $i\delta_{nm}\delta_j^i\delta(x - x')$

 C_1 :set of edges, s,t: source and target functions

 $[R_i(e), U(e')] = U(e)T_i\delta_{e,e'}$ $[L_i(e), U(e')] = T_i U(e) \delta_{e,e'}$ $[L_{i}(e), L_{j}(e')] = -if_{ij}^{k}L_{k}(e)\delta_{e,e'}$ $[R_{i}(e), R_{j}(e')] = if_{ij}^{k}R_{k}(e)\delta_{e,e'}$

Gauss law constraint $(D \cdot E)^i | \Psi_{\text{phys}} \rangle = 0$ $\sum_{e \in C_1 | s(e) = v} R_i(e) - \sum_{e \in C_1 | t(e) = v} L_i(e) \left| \Psi_{\text{phys}} \right\rangle = 0$

$H = \frac{1}{2} \sum_{e \in C_1} (E(e))^2 - \frac{K}{2} \sum_{f \in C_2} (\operatorname{tr} U(f) + \operatorname{tr} U^{\dagger}(f))$ C_2 :set of faces

$_{e_2} U(f) := U(e_4)U(e_3)U(e_2)U(e_1)$

Regularization $SU(3) \rightarrow SU(3)_k$: Quantum deformation which preserve properties of gauge symmetry

Regularization: $SU(3) \rightarrow SU(3)_k$: Quantum deformation

Solving Gauss law constraint:

 a, b, c, \cdots : representation of Wilson lines, e.g., fundamental, adjoint,...

which preserve properties of gauge symmetry Physical states are network of Wilson lines

 $\mu, \nu, \rho, \dots \in N_{ab}^c$: Multiplicity index

with fusion rule $a \times b = \sum N_{ab}^c$

Algebra of Wilson lines for $SU(3)_k$

+consistency condition

 $d_a d_b$

$SU(3)_k$ Yang-Mills theory **Hamiltonian** $H = \frac{1}{2} \sum_{e \in C_1} (E(e))^2 - \frac{K}{2} \sum_{f \in C_2} (\operatorname{tr} U(f) + \operatorname{tr} U^{\dagger}(f))$

Thermalization on a small lattice

Small lattice system

Basis $|j_1, \dots, j_{12}\rangle = |j_1, j_2, j_6\rangle |j_2, j_3, j_7\rangle |j_3, j_4, j_8\rangle |j_1, j_4, j_5\rangle$ $|j_6, j_9, j_{10}\rangle |j_7, j_{10}, j_{11}\rangle |j_8, j_{11}, j_{12}\rangle |j_5, j_9, j_{12}\rangle$

 $\mathbf{Cutoff}\, j_i \leq j_{\max} = k/2$

Dimension of Hilbert space

We employ $j_{max} = 4$: dim $\mathcal{H} = 87,426,119$

Setup In order to mimic heavy ion collision experiments, the interaction quenching

 $t \ge 0 | \Psi(t) \rangle = e^{-iHt} | Vac \rangle_{K=0}$

Expected behavior

Expected behavior

Temperature and Canonical Ensemble

Energy is fixed by an initial condition $E = \langle H \rangle = \langle \Psi(t) | H | \Psi(t) \rangle$

 $E = \langle H \rangle_{eq} := tr \rho_{eq} H$ with $\rho_{eq} = \frac{1}{2}$ tre-\$H

- (Independent of time)
- For a given energy, a canonical distribution that reproduces the expected value can be defined

Numerical results

Expected value of Wilson loop Strong coupling (low temperature $T < E_1$) first excited energy

Fluctuations are not small.

Expected value of Wilson loop Weak coupling (high temperature $T > E_1$)

Steady state observed

Long-time average vs canonical ensemble

Difference is less than 1% for K > 5

Close to Boltzmann time $2\pi\beta$.

Goldstein, Hara, Tasaki, New J. Phys. 17 (2015) 045002

QCD_2 at finite density
QCD at finite density

 How does the quark distribution function change when transitioning from baryonic matter to quark matter? •What kind of phase is realized? An inhomogenous phase?

•What is the equation of state for QCD at finite density?

Properties of (1+1) dimensions • Gauge fields are nondynamical •Hilbert space is finite dimensional in Open Boundary Condition(OBC)

$$J = \frac{ag_0}{2}, w = \frac{1}{2g_0 a}, m = \frac{1}{2g_$$

(dimensionless)QCD₂ Hamiltonian

 m_0/g_0 We use $g_0 = 1$ unit

c field term

$\chi(n) + \chi^{\dagger}(n)U^{\dagger}(n)\chi(n+1) \bigg)$ g term

Mass term

Elimination of Link variables U

Sala, Shi, Kühn, Bañuls, Demler, Cirac, Phys. Rev. D 98, 034505 (2018) Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, Nature Commun. 12, 6499 (2021)

 $\Theta_{\chi}(n)\Theta^{\dagger} := U(n-1)U(n-2)\cdots U(1)\chi(n)$

Elimination of Link variables U

Sala, Shi, Kühn, Bañuls, Demler, Cirac, Phys. Rev. D 98, 034505 (2018) Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, Nature Commun. 12, 6499 (2021)

 $\Theta_{\chi}(n)\Theta^{\dagger} := U(n-1)U(n-2)\cdots U(1)\chi(n)$ n=1 m=1*n*=1 N n=1

$\Theta H \Theta^{\dagger} = J \sum_{i=1}^{N-1} \left(\sum_{i=1}^{n} \chi^{\dagger}(m) T_{i} \chi(m) \right)^{2}$ Electric fields term

$+w\sum^{N-1}\left(\chi^{\dagger}(n+1)\chi(n)+\chi^{\dagger}(n)\chi(n+1)\right)$

Hopping term

 $+m\sum_{n=1}^{\infty}(-1)^n\chi^{\dagger}(n)\chi(n)$ mass term

As a variational ansatz of wave function •We employ a matrix product state $|\psi\rangle = \langle n_1 \rangle \cdots \langle n_N \rangle \operatorname{tr} M_1^{n_1} \cdots M_N^{n_N}$ $\{n_i\}$ $[M_{i}^{n_{i}}]_{ii}$: $D \times D$ matrix Optimize the wave function by density matrix renormalization group technique $E = \min(\psi | H | \psi)$ Ψ We employ iTensor

Numerical results

Pressure

Color SU(2), 1 flavor, vacuum $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathcal{H} = 2^{320}$ Energy density

Inhomogeneous phase (density wave) $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathcal{H} = 2^{320}$

m = 1.0

Wave number dependence $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathscr{H} = 2^{320}$

Wave number dependence

Wave number dependence $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathscr{H} = 2^{320}$

Wave number dependence

Hadronic picture

If hadron interactions are repulsive

$\frac{1/n_B}{1/n_B}$

distance $1/n_B \Rightarrow k = 2\pi n_B$

Wave number dependence $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathscr{H} = 2^{320}$

Wave number dependence

Hadronic picture

If hadron interactions are repulsive

 $1/n_B$

distance $1/n_B \Rightarrow k = 2\pi n_B$

Quark picture

If interactions between quarks Fermi surface is unstable

 \Rightarrow density wave $k = 2p_{\rm F} = 2\pi n_{\rm B}$

Quark distribution function $J = 1/8 \ w = 2 \ V = 60 \ \dim \mathcal{H} = 2^{480}$

> Low density No Fermi sea • High density Fermi-sea +BCS like pairing (density wave)

baryon quark transition around $n_R \sim 0.2$

SU(3) QCD with $N_f = 1$

Color SU(3),1 flavor $J = 1/8 \ w = 2$ V = 12 $\dim \mathscr{H} = 2^{144}$ PressureEnergy density

Color SU(3), 1 flavor $J = 1/8 \ w = 2 \ V = 12 \ \dim \mathcal{H} = 2^{144}$

density wave

Wave number dependence Quark distribution

Baryon quark transition around $n_R = 0.3$?

• Formalism Kogut-Susskind Hamiltonian formalism Application **Thermalization of Yang-Mills theory** in (3+1)-dimensional small systems Relaxation time of thermalization $\tau_{\rm eq} \sim 2\pi/T$ Boltzmann time QCD₂ at finite density baryon quark transition, inhomogeneous phase

Summary

 Large dimension Large volume Quantum simulation

Calculation of entanglement entropy(EE), negativity(NE) etc.

How to treat square lattice

How to treat square lattice

another auxiliary links

By the composition rule of the network Matrix elements do not depend on the inclusion of auxiliary links

Scrambling in Yang-Mills theory

Used as an indicator of chaos and scrambling

Time evolution

small OTOC≈scrambling

Does Yang-Mills theory exhibit scrambling?

Average OTOC $\langle \overline{\text{OTOC}} \rangle = \begin{bmatrix} dO_A dO_D \text{Tr}[O_A O_D(t)O_A^{\dagger}O_D^{\dagger}(t)] \end{bmatrix}$

 O_A , e.g., unitary operator on A

example: transverse Ising

 $\sum_{i=1}^{N} X_i - m \sum_{i=1}^{N} Z_i$

h=0: classical ising h=1:critical h=-1.05 chaos

Haar: time evolution is Haar random

Yang-Mills on a ladder

scrambling at weak coupling

Hayden-Preskill protocol

 $d_A \ll d_B \quad d_D \ll d_C$

mutual information

Tripartite information

$$|\text{EPR}\rangle_{RA} = \frac{1}{\sqrt{d_A}} \sum_{i=1}^{d_A} |i\rangle_R \otimes |i\rangle_A = \begin{bmatrix} \mathbf{R} & \mathbf{A} \\ \mathbf{A} \end{bmatrix},$$
$$\text{EPR}\rangle_{BB'} = \frac{1}{\sqrt{d_B}} \sum_{i=1}^{d_B} |i\rangle_B \otimes |i\rangle_{B'} = \begin{bmatrix} \mathbf{B} & \mathbf{B}' \\ \mathbf{A} \end{bmatrix},$$

$$I(R,C) := S(R) + S(C) - S(RC)$$

S(R):von Neumann entropy of reduced density operator

-I(R, C, D) := I(R, CD) - I(R, C) - I(R, D)If this takes minimum = scambling

Hayden-Preskill protokol

 $V_{DB'}|\Psi\rangle = \begin{bmatrix} V \\ D \\ U \end{bmatrix}^{B'}$ If U shows scambling dynamics, an V exists, and information from R' to R can be exstucted.

Yoshida-Kitaev

$$P_{\rm EPR} = {\rm Tr}[\Pi_{DD'} |\tilde{\Phi}\rangle \langle \tilde{\Phi} |] = \frac{1}{d}$$

$$F_{\rm EPR} = {\rm Tr}[\Pi_{RR'} |\Phi\rangle\langle\Phi|] = \frac{1}{d_A^3 d_B d_D R}$$

$$P_{\rm EPR} = \overline{\langle \text{OTOC} \rangle} \coloneqq \int_{\text{Haar}} 1$$
$$F_{\rm EPR} = \frac{1}{d_A^2 \overline{\langle \text{OTOC} \rangle}}$$

$\mathrm{d}O_A\mathrm{d}O_D\mathrm{Tr}[O_AO_D(t)O_A^{\dagger}O_D^{\dagger}(t)].$

$$H_{\text{Ising}} = -\sum_{i=1}^{N-1} Z_i Z_{i+1} - h \sum_{i=1}^{N} X_i - m \sum_{i=1}^{N} Z_i$$

Ising model

$$H = \sum_{i=0}^{N} \frac{3}{16} (3 - 2Z_i - Z_{i-1}Z_i) - K \sum_{i=0}^{N-1} \frac{1}{16} X_i (1 + 3Z_{i-1}) (1 + 3Z_{i+1})$$

Yang-Mills

$$\begin{array}{c|c} C & D \\ \hline \\ U \\ U \\ U \\ M \\ \hline \\ A \\ B \end{array}$$

Haar random unitary

 $\int \mathrm{d}U = 1, \qquad \int \mathrm{d}f(U$

 $\int \mathrm{d}U \ U_{i_1 j_1} U_{i_2 j_2}^* = \frac{\delta_{i_2}}{2}$ $\int \mathrm{d}U \ U_{i_1 j_1} U_{i_2 j_2} U_{i_3 j_3}^* U_{i_4 j_4}^* = \frac{\delta_{i_1}}{2}$ $-\frac{\delta_i}{\delta_i}$

$$V) = \int \mathrm{d}f(UV) = \int \mathrm{d}f(VU)$$

$$\frac{\frac{i_{1}i_{2}\delta_{j_{2}j_{1}}}{d},}{\frac{i_{1}i_{3}\delta_{i_{2}i_{4}}\delta_{j_{1}j_{3}}\delta_{j_{2}j_{4}} + \delta_{i_{1}i_{4}}\delta_{i_{2}i_{3}}\delta_{j_{1}j_{4}}\delta_{j_{2}j_{3}}}{d^{2} - 1}$$
$$\frac{i_{1}i_{3}\delta_{i_{2}i_{4}}\delta_{j_{1}j_{4}}\delta_{j_{2}j_{3}} + \delta_{i_{1}i_{4}}\delta_{i_{2}i_{3}}\delta_{j_{1}j_{3}}\delta_{j_{2}j_{4}}}{d(d^{2} - 1)}$$

Finite density

for (1+1)-dimensional QCD

Finite density calculations for QCD

• What is the finite density equation of state for QCD? How does the distribution function of quarks change when baryonic matter changes to quark matter? • What kind of phase is realized? inhomogeneous phase?

Finite density calculations for (1+1)dimensional QCD

Finite density calculations for (1+1)dimensional QCD

Properties of (1+1) dimension

Gauge field is not dynamical.
Gauge field can be removed by unitary transformation Inite degrees of freedom on open boundary **Conditions(OBC)**
QCD₂ Hamiltonian

 $H = \frac{g^2}{2} \sum_{i=1}^{N-1} E_i^2(n)$ Electric term n=1 $+\epsilon \sum^{N-1} \left(\chi^{\dagger}(n+1)U(n)\chi(n) \right)$ n=1Hopping term + $m \sum_{n=1}^{N} (-1)^n \chi^{\dagger}(n) \chi(n)$ Mass term n=1

$$(n) + \chi^{\dagger}(n) U^{\dagger}(n) \chi(n+1) \bigg)$$

QCD₂ Hamiltonian

$$H = \frac{g^2}{2} \sum_{n=1}^{N-1} E_i^2(n) \quad \text{Electric}$$

$$+\epsilon \sum_{n=1}^{N-1} \left(\chi^{\dagger}(n+1)U(n)\chi(n) + m \sum_{n=1}^{N} (-1)^n \chi^{\dagger}(n)\chi(n) + m \sum_{n$$

0

 j_1

 j_1

0

 j_3

 j_3

Physical state SU(2)

e term

 $Y(n) + \chi^{\dagger}(n)U^{\dagger}(n)\chi(n+1)$

g term

Mass term

Eliminate U with unitary transformation

Sala, Shi, Kühn, Bañuls, Demler, Cirac, Phys. Rev. D 98, 034505 (2018) Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, Nature Commun. 12, 6499 (2021)

 $\Theta_{\chi}(n)\Theta^{\dagger} := U(n-1)U(n-2)\cdots U(1)\chi(n)$

Eliminate U with unitary transformation

Sala, Shi, Kühn, Bañuls, Demler, Cirac, Phys. Rev. D 98, 034505 (2018) Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, Nature Commun. 12, 6499 (2021)

 $\Theta_{\chi}(n)\Theta^{\dagger} := U(n-1)U(n-2)\cdots U(1)\chi(n)$ $\Theta H \Theta^{\dagger} = \frac{g^2}{2} \sum_{n=1}^{N-1} \left(\sum_{n \neq 1}^{n} \chi^{\dagger} \right)$ n=1 m=1 $+\epsilon \sum_{n=1}^{N-1} \left(\chi^{\dagger}(n + n) \right)$ $+m\sum(-1)^n\chi^{\dagger}(n)$ n=1

$$(m)T_i\chi(m)\Big)^2$$
 electric

1)
$$\chi(n) + \chi^{\dagger}(n)\chi(n+1)$$

opping
 $f(n)\chi(n)$ Mass

Matrix product state $|\psi\rangle = \sum |n_1\rangle \cdots |n_N\rangle \operatorname{tr} M_1^{n_1} \cdots M_N^{n_N}$ $\{n_i\}$ $[M_{i}^{n_{i}}]_{ii}$: $D \times D$ matrix

Density matrix renormalization group $E = \min(\psi | H | \psi)$

Use iTensor library

Numerical results

カラーSU(2), 1フレーバー,真空中のバリオン Hayata, YH, Nishimura (2022)

核子中は、カイラル対称性が部分的に回復

800

1000

N = 2000

800

1000

N = 2000

熱力学量 SU(2) Hayata, YH, Nishimura (2022)

学量 SU(2) Hayata, YH, Nishimura (2022) クォーク分布関数 クォーク数密度、カイラル凝縮 N = 80 DMRG N = 80 DMRG µ=0.51, nq=0.00 µ=0.51, nq=0.00 1.2 1.4 chiral condensate quark number density 1.2 1.0 1.0 0.8 0.8 0.6 ц 0.6 0.4 0.4 0.2 0.2 0.00.00.5 2.0 2.5 0.01.0 1.5 3.0 20 10 30 р

学量 SU(2) Hayata, YH, Nishimura (2022) クォーク分布関数 クォーク数密度、カイラル凝縮 N = 80 DMRG N = 80 DMRG µ=0.51, nq=0.00 µ=0.51, nq=0.00 1.2 1.4 chiral condensate quark number density 1.2 1.0 1.0 0.8 0.8 0.6 ц 0.6 0.4 0.4 0.2 0.2 0.00.00.5 2.0 2.5 0.01.0 1.5 3.0 20 10 30 р

執力学量 SU(3) Hayata, YH, Nishimura (2022) カイラル凝縮

クォーク数密度、カイラル凝縮

N = 60 DMRG

学量 SU(3) Hayata, YH, Nishimura (2022)

N = 60 DMRG

クォーク数密度、カイラル凝縮

N = 60 DMRG

学量 SU(3) Hayata, YH, Nishimura (2022)

N = 60 DMRG

N = 80

N = 80

N = 80

Thermalization

Vacuum persistency probability (Loschmidt echo) $P_{\text{vac}} := |\langle \Psi(0) | \Psi(t) \rangle|^2$

 t/β

max dependence

Extrapolation

$j_{\rm max}$ dependence for relaxation time

eary time behavior

 $\log P_{\rm vac} \sim -(tK)^2$ perturbative

Intermediate time

Estimate slope from maxima $\tau_{\rm LE}\sim 0.3\beta\sim 1/(\pi T)$ Chaotic behavior?

 $\log P_{\rm vac} \sim - t/\tau_{\rm LE}$ 0.23 for K = 10TLE 0.28 for K = 150.40 for K = 2525

$SU(3)_k$ fusion coefficients

$$N_{ab}^c = (k_0^{\max} - k_0^{\max})$$

 $k_0^{\max} = \min(\mathcal{A}, \mathcal{B}),$

 $\mathcal{A} = \frac{1}{3} (2(p_a + p_b + q_c) + q_a + q_b + p_c),$ $\mathcal{B} = \frac{1}{3}(p_a + p_b + q_c + 2(q_a + q_b + p_c)),$ $\delta_{ab}^{c} = \begin{cases} 1 & \text{if } k_{0}^{\max} > k_{0}^{\min} \text{ and } \mathcal{A}, \mathcal{B} \in \mathbb{Z}_{+} \\ 0 & \text{otherwise} \end{cases}$ Begin, Walton, Mod. Phys. Lett. A 7 (1992) 3255

- $(11) \frac{1}{\delta_{ab}^c}$
- $k_0^{\min} = \max(p_a + q_a, p_b + q_b, p_c + q_c, \mathcal{A} \min(p_a, p_b, q_c), \mathcal{B} \min(q_a, q_b, p_c)),$

Quantum dimension

e.g., Coquereaux, Hammaoui, Schieber, Tahri, J. Geom. Phys. 57 (2006) 269

$$d_a = \frac{1}{[2]} [p_a + 1] [q_a + 1] [p_a + q_a + 2]$$

Casimir invariant

e.g., Bonatsos, Daskaloyannis, Prog. Part. Nucl. Phys. 43 (1999) 537

$$C_{2}(a) = \frac{1}{2} \left(\left[\frac{p_{a}}{3} - \frac{q_{a}}{3} \right]^{2} + \left[\frac{2p_{a}}{3} + \frac{q_{a}}{3} + 1 \right]^{2} + \left[\frac{p_{a}}{3} + \frac{2q_{a}}{3} + 1 \right]^{2} - 2 \right)$$

$$q \quad p \quad (\pi, \pi)$$

$$\frac{-q^{-\frac{n}{2}}}{-q^{-\frac{1}{2}}} = \frac{\sin\left(\frac{\pi}{k+3}n\right)}{\sin\left(\frac{\pi}{k+3}\right)}$$

 2π

 $\sqrt{3+k}$

Casimir scaling

Casimir scaling

Quantum scar

Model	(N_x, N_y, j_{\max})	Total	Gauss law	Winding	Sc
Yang-Mills	$(4, 4, \frac{1}{2})$	2^{48}	131072	32768	
	(4,2,1)	3^{24}	131328	33024	6
Levin-Wen	$(4, 2, \frac{3}{2})$	2^{24}	29375	-	
	(4,2,1)	3^{24}	131328	33024	

Honeycomb Lattice

