Radiative correction to spin polarization in QGP

Shu Lin Sun Yat-Sen University

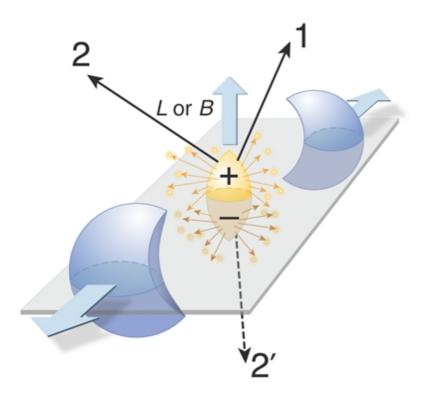
West Lake Workshop on Nuclear Physics, Hangzhou, Oct 18-20, 2024

based on: 2306.14811, 2302.12450, 2410.XXXXX

Outline

- Sources of spin polarization in heavy ion collisions
- Spin polarization in EM fields from chiral kinetic theory
- Radiative corrections to spin polarization in EM fields
- Spin polarization in hydrodynamic state/metric perturbation from chiral kinetic theory
- (In)equivalence of off-equilibrium/metric perturbation
- Radiative corrections to spin polarization in hydrodynamic state
- Conclusion and outlook

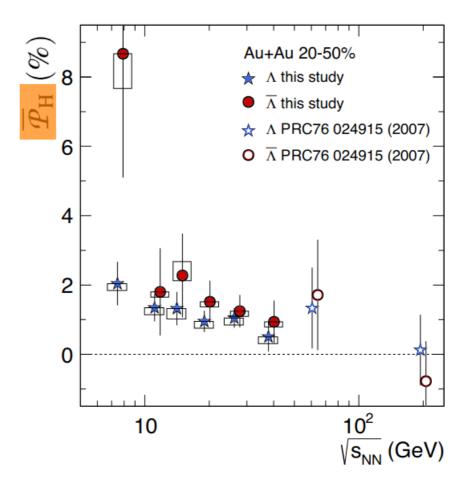
global spin polarization in heavy ion collisions



 $L_{ini} \sim 10^5 \hbar \to S_{final}$

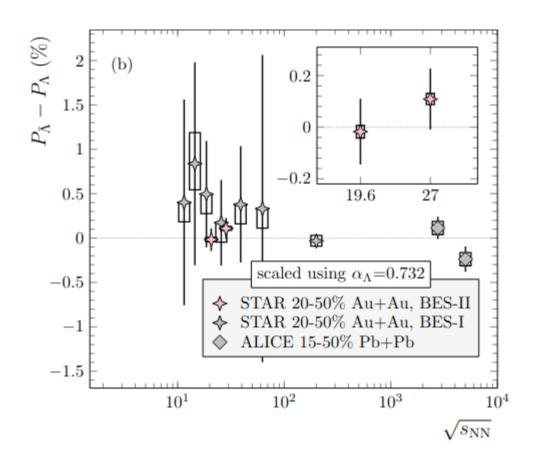
Liang, Wang, PRL 2005, PLB 2005

Niida's talk



STAR collaboration, Nature $e^{-\beta(H_0-\mathbf{S}\cdot\boldsymbol{\omega})}$ 2017

Splitting in global spin polarization



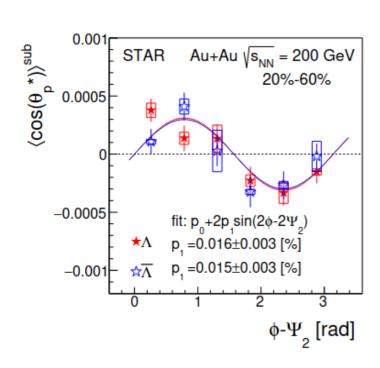
$$e^{-\beta(H_0-\mathbf{S}\cdot\boldsymbol{\omega}-\mathbf{q}\cdot\mathbf{S}\cdot\mathbf{B})}$$

Existence of splitting inconclusive yet

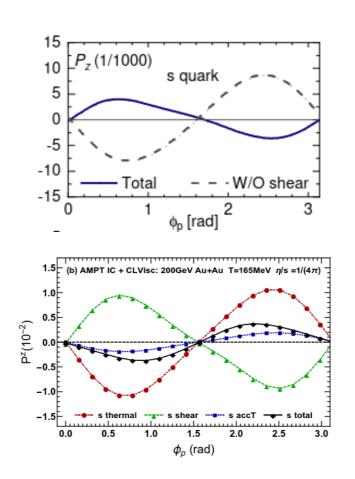
STAR collaboration, PRC 2023

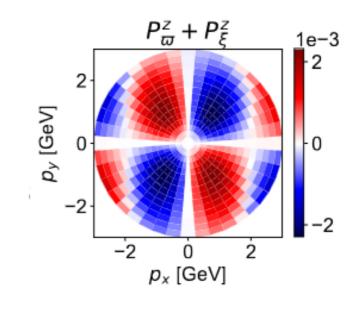
Niida's talk

local spin polarization in heavy ion collisions



STAR collaboration, PRL 2019





Fu, Liu, Pang, Song, Yin, PRL 2021 Becattini, et al, PRL 2021 Yi, Pu, Yang, PRC 2021

$$\mathcal{P}^i \sim \omega^i \quad \mathcal{P}^i \sim \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl}$$

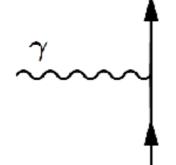
vorticity + shear

Spin polarization in heavy ion collisions

for
$$S = \frac{1}{2}$$
 particle

$$S_i \sim B_i$$

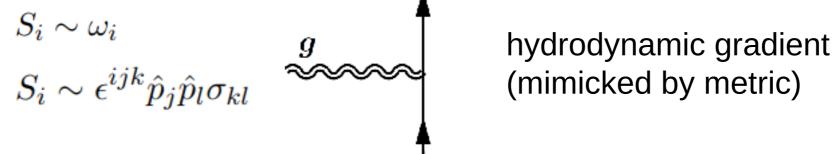
$$S_i \sim \epsilon^{ijk} \hat{p}_j E_k$$



external EM fields

$$S_i \sim \omega_i$$

$$S_i \sim \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl}$$



How can radiative correction affect spin coupling to different sources?

Spin polarization from correlation functions

Wigner function

$$S_{\alpha\beta}^{<}(X = \frac{x+y}{2}, P) = \int d^4(x-y)e^{iP\cdot(x-y)/\hbar} \left(-\langle \bar{\psi}_{\beta}(y)\psi_{\alpha}(x)\rangle\right)$$

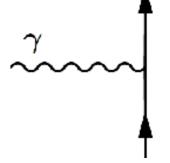
➤ Spin polarization in EM fields

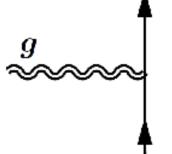
$$\langle S^{<}(X,P)\rangle_{\mathrm{eq},A_{\mu}}$$

Spin polarization in hydrodynamic state

$$\langle S^{<}(X,P)\rangle_{\text{off-eq}} = \langle S^{<}(X,P)\rangle_{\text{eq},h_{\mu\nu}}$$

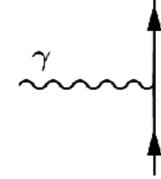
 $A_{\mu}, h_{\mu\nu}$ slow-varying $\partial_X \ll P$





Spin polarization in EM fields

$$\langle S^{<}(X,P)\rangle_{\mathrm{eq},A_{\mu}}$$



Quantum (chiral) kinetic theory description

$$\gamma_{\mu} \left(P^{\mu} + \frac{i}{2} \partial_X^{\mu} - \frac{i}{2} F^{\mu\nu} \partial_{\nu}^{p} \right) S^{<} = 0$$

Hidaka, Pu, Wang, Yang, PPNP 2022

$$S^{<} = \frac{1}{4} \left[(1 + \gamma^{5}) \gamma^{\mu} R_{\mu} + (1 - \gamma^{5}) \gamma^{\mu} L_{\mu} \right]$$

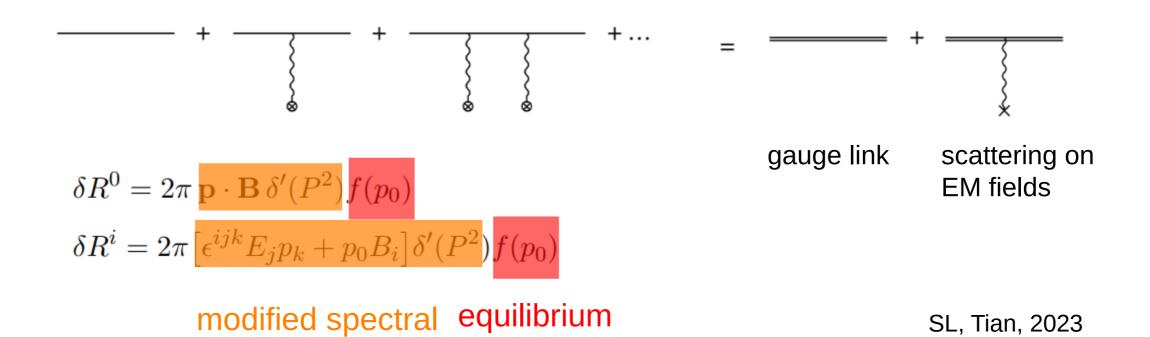
$$\delta R^{0} = 2\pi \mathbf{p} \cdot \mathbf{B} \,\delta'(P^{2}) f(p_{0})$$
$$\delta R^{i} = 2\pi \left[\epsilon^{ijk} E_{j} p_{k} + p_{0} B_{i} \right] \delta'(P^{2}) f(p_{0})$$

Hidaka, Pu, Yang 2016

$$L_{\mu} = -R_{\mu}$$

Spin polarization from difference between R & L

Equivalent diagrammatic description: EM fields



Spin polarization = modified spectral function \times equilbrium distibution

distribution

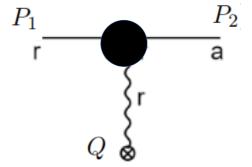
function

Standard KMS relation

In-medium electromagnetic form factors (FF)

$$\Gamma^{\mu} = F_0 u^{\mu} + F_1 \hat{p}^{\mu} + F_2 \frac{i \epsilon^{\mu\nu\rho\sigma} u_{\nu} P_{\rho} Q_{\sigma}}{2(P \cdot u)^2}$$

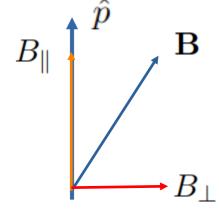
 u^{μ} medium frame vector



$$S^{<0} = 2\pi F_2 p B_{\parallel} \delta'(P^2) f(p_0)$$

$$S^{< i} = 2\pi \left[F_0 \epsilon^{ijk} E_j p_k + F_1 p_0 B_\perp^i + F_2 B_\parallel p^i \right] \delta'(P^2) f(p_0)$$

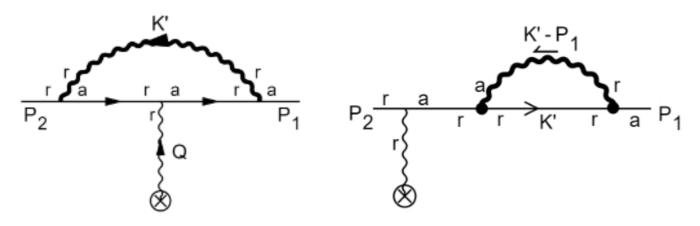
spin Hall spin-perpendicular spin-parallel effect magnetic coupling magnetic coupling



In vacuum
$$F_0 = F_1 = F_2 = 1$$

In medium: lift of degeneracy expected

Radiative correction to in-medium electromagnetic FF



$$\delta F_0 = \frac{2m_f^2}{p^2} X + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

spin Hall effect

$$\delta F_1 = \frac{2m_f^2}{p^2}(X - 1) + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

spin-perpendicular magnetic coupling

$$\delta F_2 = \frac{2m_f^2}{p^2} X + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

spin-parallel magnetic coupling

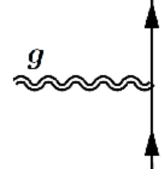
X(p,T)

degeneracy partially lifted in in-medium FF

SL, Tian, 2023

Spin polarization in hydrodynamic state

$$\langle S^{<}(X,P) \rangle_{ ext{off-eq}} = \langle S^{<}(X,P) \rangle_{ ext{eq},h_{\mu\nu}}$$
 CKT in flat space curved space



CKT in flat space: off-equilibrium state

$$\frac{i}{2} \partial S^{<} + PS^{<} = 0$$

$$S^{<} = \frac{1}{4} \left[(1 + \gamma^{5}) \gamma^{\mu} R_{\mu} + (1 - \gamma^{5}) \gamma^{\mu} L_{\mu} \right]$$

Hidaka, Pu, Yang 2016, 2017

$$R^{\mu} = -2\pi \delta(P^2) \left(P^{\mu} f_n + \frac{\epsilon^{\mu\nu\rho\sigma} P_{\rho} n_{\sigma}}{2P \cdot n} \partial_{\nu} f_n \right)$$

 n^{μ} arbitrary frame vector $\rightarrow u^{\mu}$

$$\partial_i f\left(\frac{P\cdot u(X)}{T(X)}\right)$$
 modified KMS relation (for axial component)

free theory dispersion + local equilibrium

$$f(p_0) \to f(p_0 - \frac{1}{2}\hat{p} \cdot \omega)$$
 modified distribution

$$S^{i} \sim \left(\beta \omega^{i} + \epsilon^{ijk} \hat{p}_{l} \hat{p}_{k} \beta \sigma_{jl} + \partial_{i} \beta\right)$$

degenerate couplings to vorticity, shear, T-grad

CKT in curved space: equilibrium state

$$\gamma^{\mu} = e^{\mu}_{a} \gamma^{a} \qquad \bar{\psi} = \psi^{\dagger} \gamma^{\hat{0}}$$

 μ curved index

flat index

Gao, Huang, Mameda, Liu 2018

$$S^{<} = \frac{1}{4} \left[\left(1 + \gamma^5 \right) \gamma^a R_a + \left(1 - \gamma^5 \right) \gamma^a L_a \right]$$

Clifford algebra in flat basis

$$R^a = -2\pi\delta(P^2)\left(P^af_n + \frac{\epsilon^{abcd}n_d}{2P\cdot n}e_b^\mu D_\mu(P_cf_n)\right) \qquad \textit{f_n} : \text{equilibrium distribution}$$

$$D_{\mu} = \partial_{\mu}^{K} + \Gamma_{\mu\nu}^{\lambda} \frac{\partial}{\partial P_{\nu}} P_{\lambda}$$

$$D_{\mu} = \partial_{\mu}^{K} + \Gamma_{\mu\nu}^{\lambda} \frac{\partial}{\partial P_{\nu}} P_{\lambda} \qquad h_{0i} = -v^{i} \quad h_{00} = -2 \frac{\delta T}{T}$$

Christoffel term can realize vorticity and T-grad, but not shear!

$$\langle S^{<}(X,P)\rangle_{\text{off-eq}} = \langle S^{<}(X,P)\rangle_{\text{eq},h_{\mu\nu}}$$
 Inequivalence?

Diagrammatic description of metric perturbation

fermion



$$S^{<}(X,P) = \int d^4y \sqrt{-g(X)} e^{-iP \cdot y} \langle \bar{\psi}_{\beta}(X + \frac{y}{2}) \psi_{\alpha}(X - \frac{y}{2}) \rangle$$

Gao, Huang, Mameda, Liu 2018

$$\bar{\psi}(X+\frac{y}{2}) = \bar{\psi}(X) \exp(\frac{y}{2} \cdot \overleftarrow{D}) \quad \psi(X-\frac{y}{2}) = \exp(-\frac{y}{2} \cdot D) \psi(X) \quad \text{gravitational gauge link}$$

$$\psi(X - \frac{y}{2}) = \exp(-\frac{y}{2} \cdot D)\psi(X)$$

$$D_{\mu} = \partial_{\mu}^X + \frac{1}{4} \omega_{\mu,ab} \gamma^{ab} - \Gamma_{\mu\nu}^{\lambda} y^{\nu} \partial_{\lambda}^y \qquad \begin{array}{c} \text{Effect II: rotation spinor by spinor} \\ \text{spinor by spinor} \end{array}$$

Effect II: rotation of connection

Summary of three approaches

Equilibrium + metric perturbation:

- I. CKT;
- II. diagrams

III. Off-equilibrium CKT

- ►II = I + spin-vorticity coupling
- ➤ Neither I nor II reproduces III

Need to work with off-equilibrium state

Off-equilibrium state from metric perturbation

static metric perturbation
$$h_{0i} = -v^i$$
 $h_{00} = -2\frac{\delta T}{T}$

equilibrium state in curved space $f(\frac{p_{\mu}u^{\mu}}{T})$ $u^{\mu}=(g_{00}^{-1/2},0,0,0)$

$$f\left(\frac{p_a u^a}{T}\right) \qquad u^a = u^\mu e^a_\mu$$

choice of vielbein (local reference frame)

$$e_0^{\hat{0}} = 1 + \frac{h_{00}}{2}, \quad e_i^{\hat{j}} = -\delta_{ij}, \quad e_0^{\hat{i}} = -h_{0i}.$$

off-equilibrium state in flat space $u^{\hat{0}}=1, \quad u^{\hat{i}}=-h_{0i}.$

Types of radiative corrections

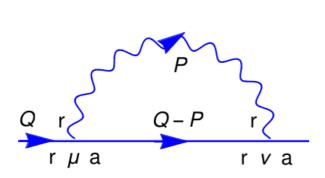
- > spectral function
- >distribution function
- >KMS relation

At tree level, spin polarization from modified KMS + modified distribution

At loop level, radiative correction occurs in all three types

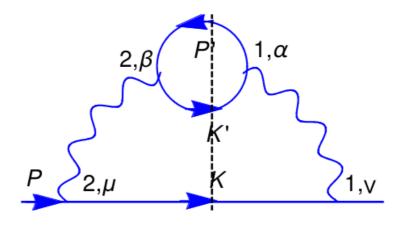
Focus on radiative correction to spectral function

How to include self-energy corrections?



correction to spectral function, usually ignored

this talk: correction to spectral function, no collision



collision term in steady state

$$\delta f \sim O\left(\frac{\partial}{g^4}\right)$$

$$g^4 \times \delta f \sim O(\partial)$$

diagramatic resummation Gagnon, Jeon, 2006

collisional contribution to spin-shear coupling: SL, Wang, 2022, 2024

Spectral function representation

$$\rho_{\alpha\beta}(P) = \int d^4x e^{iP\cdot x} \langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(0) + \bar{\psi}_{\beta}(0)\psi_{\alpha}(x) \rangle$$

$$S_{ra,\alpha\beta} = \int d^4x e^{iP\cdot x} \theta(x_0) \langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(0) + \bar{\psi}_{\beta}(0)\psi_{\alpha}(x) \rangle$$

$$\rho(P) = 2\operatorname{Re}[S_{ra}(P)] = 2\operatorname{Im}[S_R]$$

valid for off-equilibrium state invariant under time-reversal

Possible corrections to retarded function

$$\frac{i}{2} \partial S_R(X, P) + P S_R(X, P) - \left(\Sigma_R(X, P) S_R(X, P) + \frac{i}{2} \{ \Sigma_R(X, P), S_R(X, P) \}_{PB} \right) = -1$$

$$S_R = S_R^{(0)} + S_R^{(1)} + \cdots,$$

$$\{A, B\}_{PB} = \partial_P A \cdot \partial_X B - \partial_X A \cdot \partial_P B$$

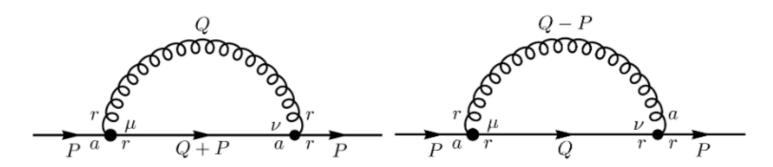
$$S_R^{(0)} = -\frac{1}{P} - \frac{1}{P} \Sigma_R \frac{1}{P}$$

$$S_R^{(1)} = -\frac{1}{\cancel{P}} \delta \Sigma_R \frac{1}{\cancel{P}} + \gamma^5 \gamma^\beta P^\nu T^{\mu\lambda} \epsilon_{\beta\lambda\mu\nu} \frac{-1}{(P^2)^2}$$

$$T_{\mu\lambda} = \partial_{[\mu} \Sigma_{\lambda]}^R$$

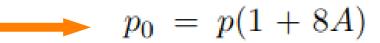
involves both equilibrium/off-equilibrium self-energy

Equilibrium self-energy



$$\frac{\Sigma_{ar}}{g^2C_F} = 2i \not \! P(A+B) + 4ip_0 \gamma^0 A.$$

$$P \gg T - P^2 \ll p/\beta$$
,



Energetic particle close to mass shell (not HTL)

$$A = \frac{1}{2(2\pi)^2} \frac{-i\pi}{2p\beta}.$$

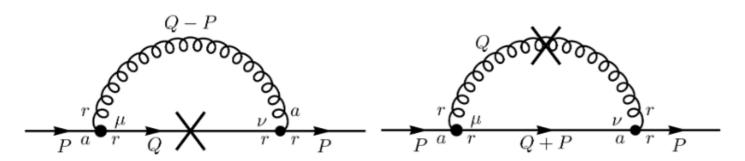
modified dispersion:

finite damping

$$p_0 \to p \cdot u(X), \ \beta \to \beta(X)$$

No correction to spectral function

Off-equilibrium self-energy



$$\frac{\delta \Sigma_{ar}}{q^2 C_F} = \gamma^5 \gamma^\mu \mathcal{A}_\mu,$$

off-equilibrium propagators for quark/gluon from CKT

Hidaka, Pu, Yang 2017 Huang, Mitkin, Sadofyev, Speranza 2020

Hattori, Hidaka, Yamamoto, Yang 2020

$$\mathcal{A}^{0} = i\omega^{i}p_{i}\beta(-4\delta A - 2\delta B),$$

$$\mathcal{A}^{k} = i\omega_{\parallel}^{k}\beta p(-4\delta A - 2\delta B) + \omega_{\perp}^{k}\beta p(-4\delta A - \delta B) + \epsilon^{ijk}\hat{p}_{i}\hat{p}_{l}\sigma_{jl}\beta p(-\delta B) + \epsilon^{ijk}p_{i}\partial_{j}\beta(-\delta C) \qquad \hat{p} \qquad \omega$$

$$\delta C = \frac{1}{4(2\pi)^{2}}\left(\frac{-4C_{a} + 2C_{b} + i\pi C_{a} - 2C_{a}\ln\frac{p\beta(-1+a)}{2}}{2p\beta}\right) \qquad a = p_{0}/p + i\eta.$$

similar expressions for $\delta A \delta B$

tree level vs loop correction

loop
$$\int dp_{0}\delta S^{<}(P) = \int dp_{0}\delta \rho(P)f(p_{0})$$

$$= \frac{g^{2}}{2(2\pi)^{2}} \frac{\pi}{2p} \gamma^{5} \gamma_{i} \left[\omega_{\parallel}^{i} (2C_{b} + (-2 + \ln 4)C_{a}) + \frac{2C_{b} + (2 + \ln 4)C_{a}}{2} \omega_{\perp}^{i} + \frac{2C_{b} + (-6 + \ln 4)C_{a}}{2} \epsilon^{ijk} \hat{p}_{j} \hat{p}_{l} \sigma_{kl} + \frac{2C_{b} + (-4 + \ln 4)C_{a}}{2} \epsilon^{ijk} \hat{p}_{j} \frac{\partial_{k} \beta}{\beta} \right] f(p)$$

$$C_{a} = 0.5 \qquad C_{b} \simeq 0.630,$$

tree
$$\int dp_0 S_{(0)}^<(P) = -\gamma^5 \gamma_i \frac{2\pi}{2} \left(\omega^i + \frac{\epsilon^{ijk} \hat{p}_k \frac{\partial_j \beta}{\beta}}{\beta} + \frac{\epsilon^{ijk} \hat{p}_k \hat{p}_l \sigma_{lj}}{\beta} \right) f'(p)$$

degeneracy in couplings to vorticity, shear, T-grad lifted

Conclusion

- Spin polarization in off-equilibrium state can't be fully mimicked by metric perturbation on equilibrium state
- Equilbrium state in curved space describes off-equilbrium state in flat space with suitable choice of local rest frame
- Sources of polarization: modified spectral; modified distribution; modified KMS
- Radiative correction to spectral function lifts degeneracy of spin coupling to vorticity, shear and T-grad

Outlook

- Radiative correction to distribution function a la gravitational FFs
- Radiative correction to modified KMS

Thank you!

Equilibration of hydro DOF

$$G_{\pi_{i}\pi_{j}}^{R} = \left(\delta_{ij} - \hat{k}_{i}\hat{k}_{j}\right) \frac{\eta^{k^{2}}}{i\omega - \gamma_{\eta}k^{2}} + \hat{k}_{i}\hat{k}_{j}\frac{(\epsilon + p)(k^{2}c_{s}^{2} - i\omega\gamma_{s}k^{2})}{\omega^{2} - k^{2}c_{s}^{2} + i\omega\gamma_{s}k^{2}}$$

$$G_{\epsilon\epsilon}^{R} = \frac{(\epsilon + p)k^{2}}{\omega^{2} - k^{2}c_{s}^{2} + i\omega\gamma_{s}k^{2}}$$

$$\omega \to 0 \qquad G_{\pi_{i}\pi_{j}}^{R} \to -\delta_{ij}(\epsilon + p) \quad G_{\epsilon\epsilon}^{R} \to -\frac{\epsilon + p}{c_{s}^{2}}$$

$$\delta\pi_{i} = h_{0j}G_{\pi_{i}\pi_{j}}^{R} = -(\epsilon + p)\delta_{ij}h_{0j} \qquad \delta\epsilon = \frac{1}{2}h_{00}G_{\epsilon\epsilon}^{R} = -\frac{(\epsilon + p)}{2c_{s}^{2}}h_{00}$$

$$h_{0i} = -v^{i} \quad h_{00} = -2\frac{\delta T}{T}$$

Equilibration of hydro DOF in static metric perturbation