

Recap of optics measurements in LEIR

- Optics deviation increases from 25% at injection to 50% peak beta-beating at top energy in H plane - Good agreement between 2022 & 2023 and methods at injection
- Good agreement between kick methods at top energy
- Clear 4-fold periodicity in horizontal beta-beating, while vertical plane remains lower.

Combined tbt and k-mod optics

Square synchrotron with:

- two fold symmetry
- 4 arcs of 90 degrees.

LEIR **bends** are almost 'strong' focussing

- Area where **betax >> betay**

=> proper modelling in simulation is crucial

The 90 degree bends are not continuous

LEIR bends first used in 1982 in LEAR

- A wedge has been cut out to install instrumentation devices.

- Fringe fields in this region are currently not modelled

=> Can cause large discrepancies between model and measurement.

Design of LEIR dipoles

LEIR dipoles consist of 6 separate blocks of iron with:

- single continuous coil.
- small gap between block 1 & 2 (5&6) -> probably insignificant
- Large wedge -> probably significant

OPERA simulations of single blocks

Vincenzo Di Capua found an analysis of OPERA simulations done years ago by A. Aloev. - Results only available at the centers of the individual magnet yoke blocks.

By HIGH field map in the magnet block 2

By HIGH field map in the magnet block 3

Field map only available at centers of blocks

As a future reference to clarify axes in field map plots.

There is no full OPERA model for the moment

Currently we only have:

- Analysis of models that represent independent magnet yoke blocs (*Still not clear to me if these models have been found or not..)

Missing for full Opera model:

- Full model of the 6 blocks
- Pole Face Windings
- Corrector coils

=> So edge effects & wedge harmonics are currently not available from Opera model

Other possible approach is to use the analytical fringe field models of Silke & Riccardo, but not yet ready.

Approximate wedge contribution as thin quadrupole

A naive study was done to see what would be required to reproduce the measured optics deviation - Installed 4 thin quadrupoles at the centers of each wedge

Approximation gives comparable results

Quadrupoles at the location of the wedges give significant horizontal beta-beating, while minimally affecting the vertical plane.

=> K1L = -0.01 corresponds to ~1.7% of main defocussing quadrupole K1L

Also looked at the effect of edge angle deviation

The effect of edge angles is much weaker than the thin quadrupoles. - e1 of 0.001 corresponds to about 1% of main e1 = so 1% change in angle gives ~1% change in beta_x

In the right direction, but insignificant compared to measurements.

Conclusions

- Recap:

 - Optics increases in H-plane from injection to top-energy
- A big wedge in the LEIR bends are suspected to create significant focussing errors. There are currently:
 - no accurate models of wedge
 - no OPERA models of wedge
 - no magnetic measurements
 - => Discussions ongoing to conjure funding for modelling
- Approximating wedge contribution with thin quadrupole with ~1.7% of main quad K1L yields comparable beta-beating in horizontal plane at injection energy.
- Further measurements in 2024 with better control of orbit, sextupoles, chroma, etc.. could help further \bullet constrain the localisation of error sources.

Good reproducibility of optics measurements between 2022 and 2023, and across kick methods