

Searches for QCD Instantons with ALFA Detector

feasibility study

Tamilarasan Ketheeswaran RWTH Aachen University

Tomas Sykora Charles University
Monica Dunford Heidelberg University

Recap QCD Theory of Strong Interactions

- Hadron: particles that hold together due strong interaction
 - 2 Quarks: Meson $(q\bar{q})$
 - 3 Quarks: Baryon (qqq or $\bar{q}\bar{q}\bar{q}$)
- Resonances: excited states of Hadrons
- Initially we had many hadrons and resonances
- Too many, for all of them to be fundamental particles
- Theory of QCD was able to explain all with proposing 6 quarks and 8 gluons
 - Quarks → fundamental particles behind all hadrons and resonances
 - Gluons → force carrier

Problems of Perturbative QCD

Limits of Perturbation theory

- Energy scale of Field Theory
 - High energy short distance
 - Low energy long distance

- Perturbation theory predicts behaviour only if done to the correct equilibrium (vacuum)
- At high energies, perturbative QCD works well
 - particles behave mostly freely (interact weakly) → asymptotic freedom
- At low energies QCD too strong (system too far from equilibrium) → Perturbation theory not applicable
- We need non-perturbative approaches
 - example where pQCD breaks down: measurement of total pp cross section

Comparison of QCD and QED

Difference in group and the implications

- QED symmetry group U(1) ↔ QCD symmetry group SU(3)
- QED electric charge (Q) ↔ QCD color charge (R,B,G)
- Gluons are analogues to photons and are massless
 - Gluons: color charge + no electric charge
 - photons: no color charge + no electric charge
- QED is Abelian → vacuum is trivial (unique)
- QCD is non-Abelian → vacuum is non trivial due to the presence of instantons

Soliton

Where is the Soliton? It's in solitonary confinement

- Solitons are wavepackets that are classical solutions with particle like properties
 - permanent form
 - localized within a region
 - can interact with other solitons
 - after interaction soliton keeps its form
 - they are robust → behave like standard initial/final (one particle) states

Instanton

The key part of this presentation

- Instantons are soliton solution with important caveat
 - they are solution in Euclidean spacetime
 - cannot exist forever in Minkowski time
 - Instanton appears only at one instant in time

source: Wikipedia

- they would predict processes not explainable in perturbation theory
 - would predict new QCD and EW processes violating symmetries

Instanton

What does Euclidean time mean

$$S = L \int \frac{1}{2\pi} d\tau \frac{1}{2} m \left(\frac{dx}{d\tau} \right)^{2} - V$$

$$\tau = it$$

$$S_{E} = -\int i t \int_{2}^{1} \frac{1}{2} \int_{2}^{1} \frac{1$$

Errergy harrier too high This is just a S(T, V') with V' = -V

Time has lost meaning now → happens instantly

What process are we interested at the LHC?

7

Implications of Instantons in QCD

They would be instantaneous game-changers!

- Change in winding number is measurable indirectly
 - by violating "chiral symmetry"
- In perturbative approaches not possible
- Violation would be proof of
 - highly non-trivial structure of the QCD vacuum

How to detect Instantons at CERN

- Events with high gluon multiplicities will suppress signal
 - Dominated by Multiple Parton Interactions (MPI)
 - in pp collision several partons can interact at same time
 - more than one interaction → low chances for rapidity gaps

C. Charlot, LLR-École polytechnique, CNRS&IN2P3

How to detect Instantons at CERN

- Demand events with large rapidity gap^[1-4]
 - gap in rapidity of proton and the secondaries
 - suppress background
- Rapidity gap is applied using central ATLAS/ALFA
 - Absolute Luminosity For ATLAS: Measure elastic protonproton scattering at small angles
- My Tasks:
 - Estimate number of events detectable by ALFA based on theory
 - compare with data → maybe visit Stockholm afterwards

Winding Number - Backup

Didn't expect to be that fast

- To the field configuration we can assign winding number $N_{\it CS}$
- Result will be integer
- Implies that pure gauge field configurations can be classified by a number
- configurations of different number cannot be deformed into each other

