Summer Student Session - CERN

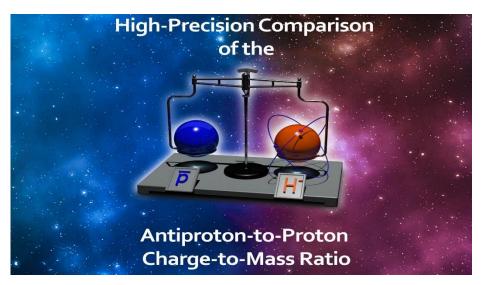
Superconducting Joints for the BASE Coil System

Thomas Hepworth

University of Winnipeg/CERN 07/08/2024

Heinrich Heine Universität Düsseldorf

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

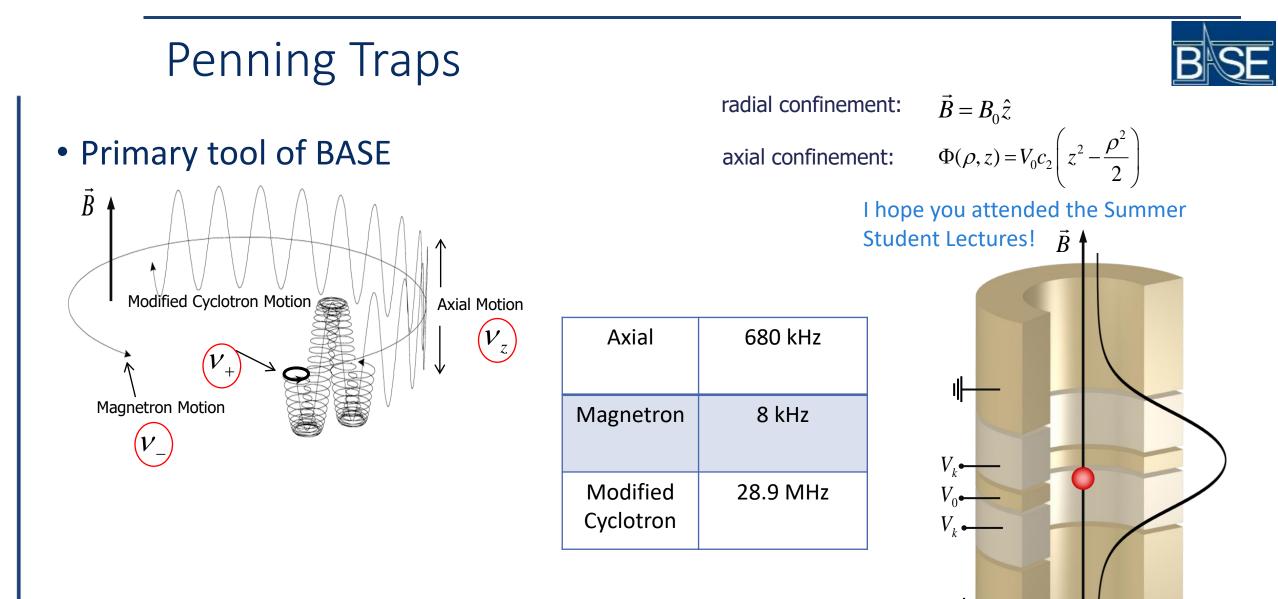


What is BASE?

- Baryon Antibaryon Symmetry Experiment
 - Founded at CERN in 2013
- Measurements of the fundamental properties of protons/anti-protons
 - Magnetic moment
 - proton/antiproton q/m ratio

Borchert, M.J., Devlin, J.A., Erlewein, S.R. *et al.* A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio. *Nature* **601**, 53–57 (2022). https://doi.org/10.1038/s41586-021-04203-w

• Use Penning trap systems to make extremely precise measurements


Physics Motivation

- Charge-Parity-Time invariance is one of the most fundamental discrete symmetries in the standard model
 - All matter/anti-matter particles should have same fundamental properties
- CPT violation is a potential source for the observed baryon asymmetry of the universe in some models

Quantity	Expectation	Observation
Baryon/Photon Ratio	10 ⁻¹⁸	0.6*10 ⁻⁹
Baryon/Antibaryon Ratio	1	10,000

 BASE compares properties of protons/anti-protons as a very precise direct test of CPT

• How do these frequencies tell us q/m or g_p ?

Schematic of BASE Penning trap

Invariance Theorem

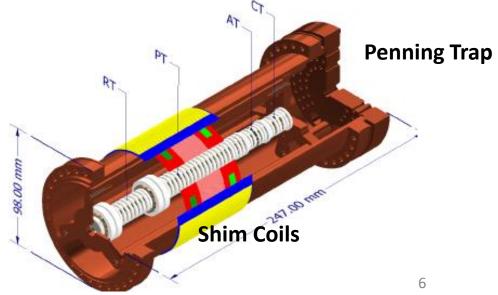
• For properly aligned traps:

$$v_c = \sqrt{v_+^2 + v_z^2 + v_-^2}$$

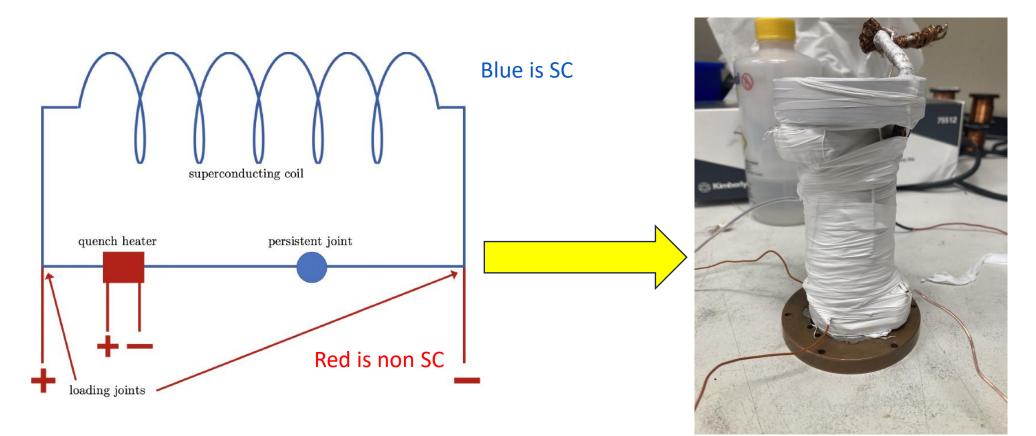
$$\nu_c = \frac{1}{2\pi} \frac{q_p}{m_p} B !!$$

G. Gabrielse, The true cyclotron frequency for particles and ions in a Penning trap, International Journal of Mass Spectrometry Volume 279, Issues 2–3, 2009, Pages 107-112, ISSN 1387-3806, https://doi.org/10.1016/j.ijms.2008.10.015.

- For precise measurements of q/m we must precisely measure:
 - 3 different trap frequencies
 - B, the magnetic field


• B must be homogenous across the trap, and not change over time

Superconducting Shim Coil System


- Magnetic field expansion in our trap: $B(z) = B_0 + B_1 z + B_2 z^2 + \cdots$
 - Around center of trap at z = 0

• By using a set of shim coils, we can tune B₀, B₁ and B₂ around the center of our trap (the PT)

Superconducting Coil Schematic

 A loaded Persistent Coil produces stable field without needing current supply – a perfect candidate for long term field control!

Superconducting Electrical Joints

- Good joints are necessary for a good system
 - My role is to test joints and develop alternative ways to make them for comparison

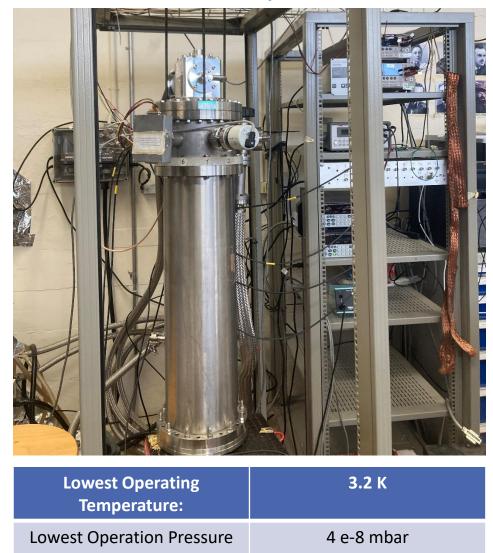
• 2 Types:

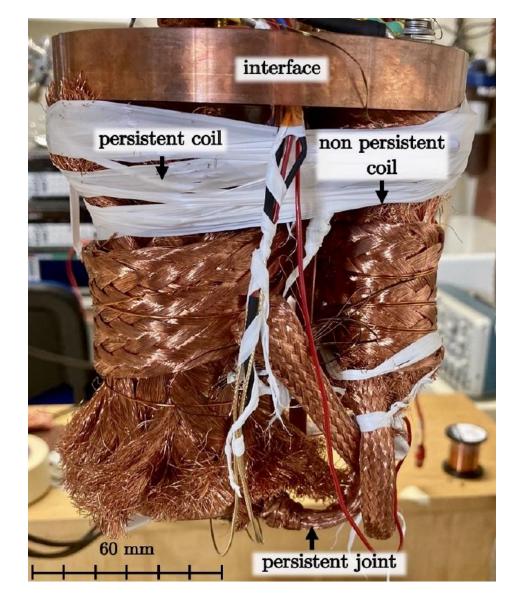
- Loading: Put current into the system
- Persistent: Keep current flowing in the coil

- Any experiments coil system is only as good as its joints!
 - BASE joints can go at least **<u>2 months</u>**

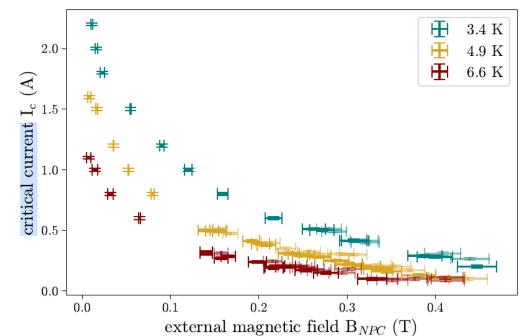
Current BASE Joints

- Superconducting NbTi coil (φ = 125 µm)
- Copper loading joint connects Cu to NbTi
 - Passes current into system




- Spot Welded Persistent Joint
 - Inside permalloy shield

Test Setup

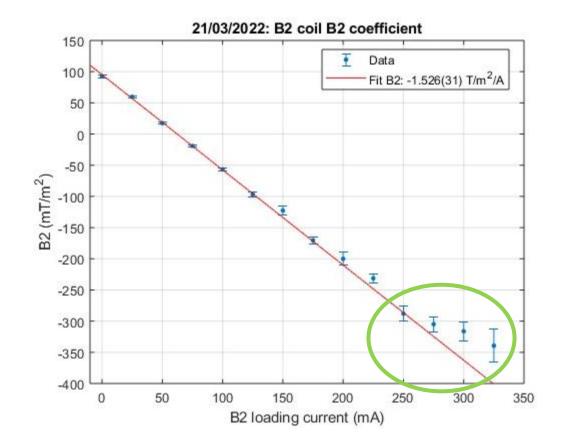

Testing a Joint

- Loading current as a function of B field
 - 1. Change values of external field with NPC
 - 2. Measure the critical current we see in the PC

- Of course, B_1 and $B_2 = 0$ is ideal
 - $B(z) = B_0 + B_1 z + B_2 z^2 + \cdots$

Development of a Test Setup to Characterize Persistent Joints for Future High Precision Penning Trap Experiments, Bachelor Thesis by Maylin Schiffelholz Gottfried Wilhelm Leibniz Universität Hannover

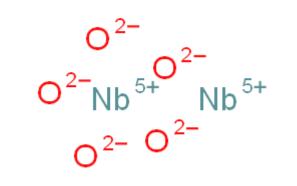
- New: I am implementing a new cryogenic hall probe for these tests
 - This should reduce problems with overheating the system



Tuning B_1 and B_2

- Joints stop operating persistently at loading currents near 250 mA
- If we can do Better than this, a better joint has been made!

	2021 residual	2024 *tunning
B1 (linear)	0.0270(7) T/m	0.011 T/m
B2 (quadratic)	0.1298(8) <i>T/m</i> ²	0 (0.0003) T/m ²


 Problem: To make B1 = 0. We need to load several amps (which we can't sustain with our persistent joint)

New BASE Joint Concept

- When not in vacuum, NbTi oxidizes
- Formation of Nb₂O₅ layer affects superconductivity

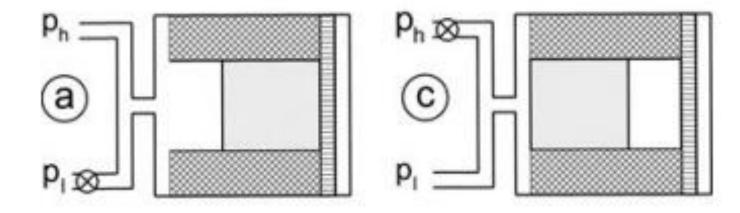
- Solution: Remove this layer with acid and store NbTi wire in vacuum chamber before we implement no loses in superconductivity
 - This is done for RF cavities in CERN accelerators
- This has not been done with single NbTi wires
- Patel, D., Kim, SH., Qiu, W. *et al.* Niobium-titanium (Nb-Ti) superconducting joints for persistent-mode operation. *Sci Rep* **9**, 14287 (2019 https://doi.org/10.1038/s41598-019-50549-7
- Critical currents of >200A in joints using copper matrix setup

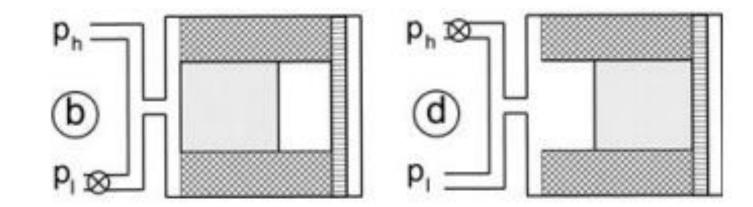
Conclusion/Outlook

- BASE makes world leading measurements of protons/anti-protons
- The primary systematics they must account for are magnetic field inhomogeneities
- This is done with a Shim coil system, where good SC joints are a must!
- Joint development and testing will continue for the rest of the summer
 - Currently commissioning old joints and preparing NbTi samples for acid treatment

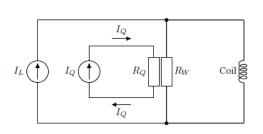
Thanks to my supervisor Barbara Maria-Latacz for picking me to be apart of BASE for the summer

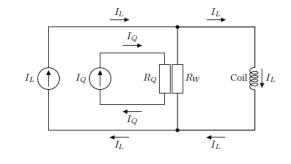
BASE and BASE-STEP Students :D

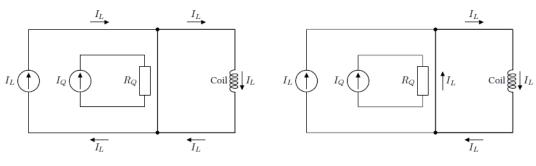




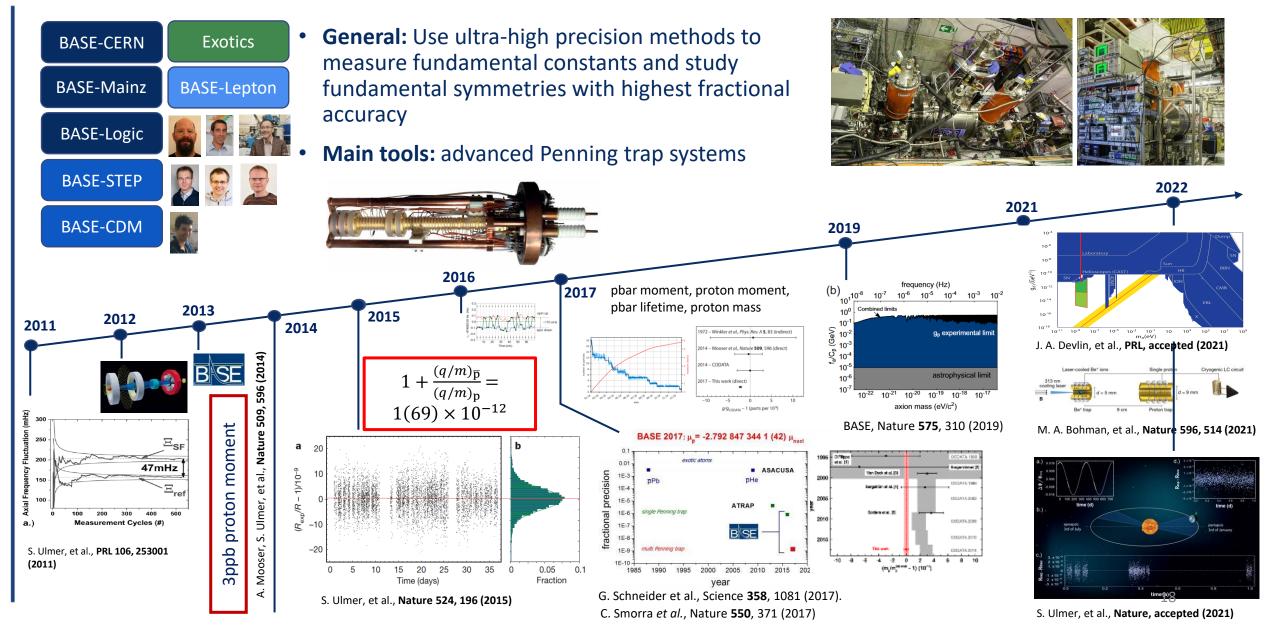
Backups


https://link.springer.com/content/pdf/10.1007/s10909-011-0373-x.pdf

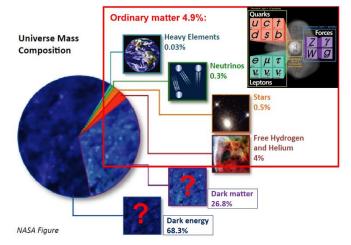



Coil Loading Sequence

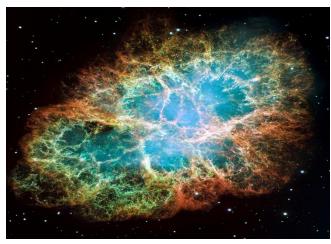
(a) The quench current I_Q dissipates power in the quench heater R_Q and warms up part of the superconducting wire above its critical temperature. This creates a small resistance R_W in the superconducting coil.


(b) Applying a loading current to the coil initially creates an induced current of same magnitude in the opposite direction, however, this current decays over R_W with a time constant $\tau = \frac{L}{R}$ and after a short time the full loading current flows through the coil.

- (c) After removing the quench current and making the coil persistent, flux conservation keeps the current flowing through the fieldcreating part of the coil.
- (d) After the external loading current is removed, the current flowing in the coil is conserved and the system can be decoupled from the outside to reduce noise.
- Figure 1.9: Coil loading scheme: (a) Apply quench current. (b) Apply loading current. (c) Remove quench current. (d) Remove loading current.

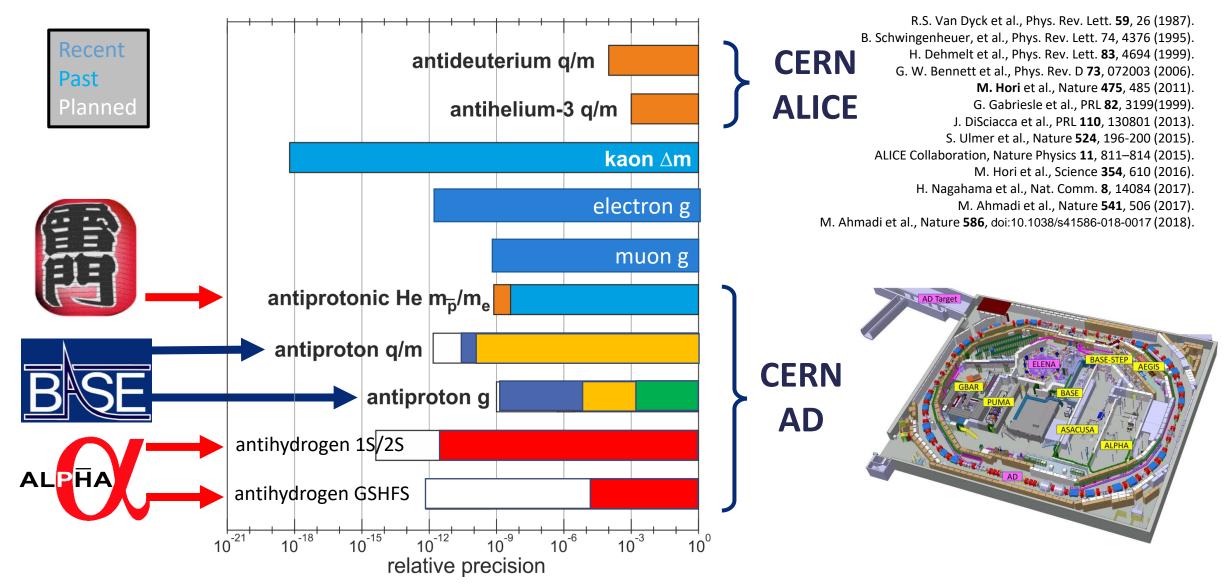

Scientific Activities and Highlights - Overview

Matter / Antimatter Asymmetry

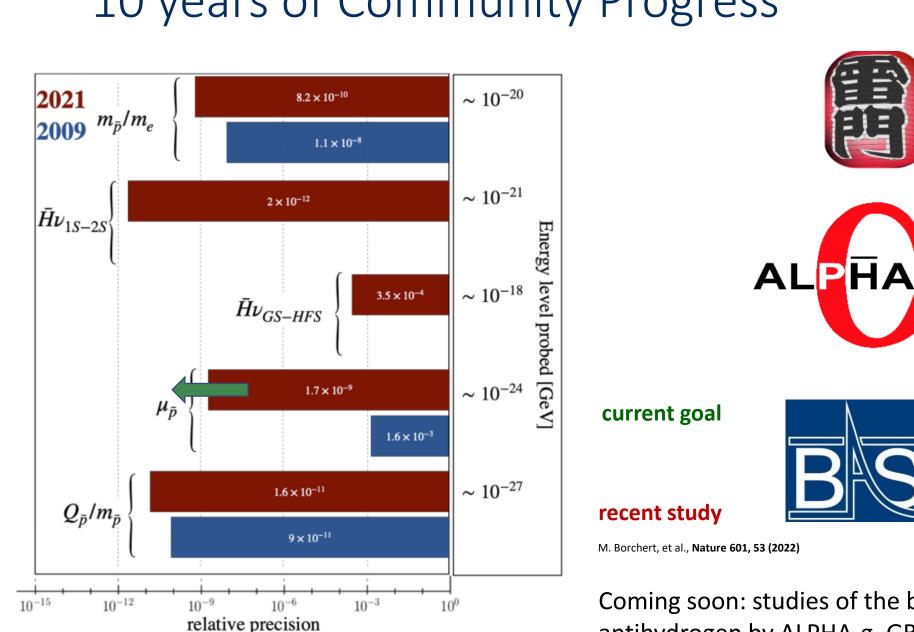

Combining the Λ -CDM model and the SM, our predictions of the baryon to photon ratio are **inconsistent by about 9 orders of magnitude**

Naive Expectation		Observation	
Baryon/Photon Ratio	10 ⁻¹⁸	Baryon/Photon Ratio	0.6 * 10 ⁻⁹
Baryon/Antibaryon Ratio	1	Baryon/Antibaryon Ratio	10 000

Sakharov conditions

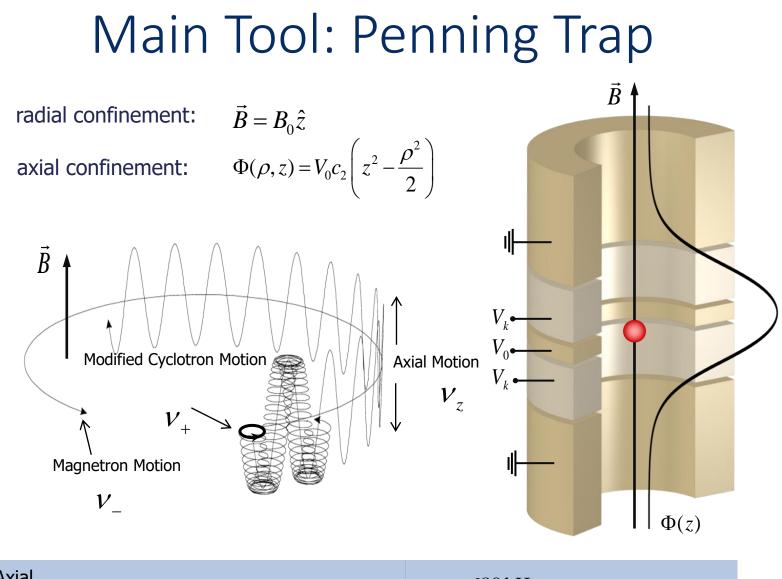

- 1.) B-violation (plausible)
- 2.) CP-violation (observed / too small)
- 3.) Arrow of time (less motivated)

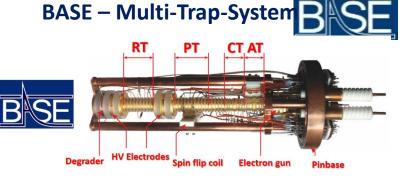
Alternative Source: CPT violation – adjusts matter/antimatter asymmetry by natural inversion given the effective chemical potential.



Experimental signatures sensitive to CPT violation can be derived from precise comparisons of the fundamental properties of simple matter / antimatter conjugate systems

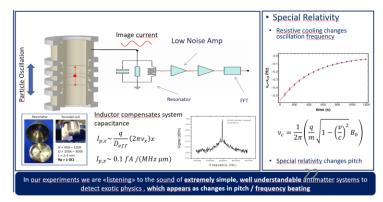
CPT tests based on particle/antiparticle comparisons


comparisons of the fundamental properties of simple matter / antimatter conjugate systems


10 years of Community Progress

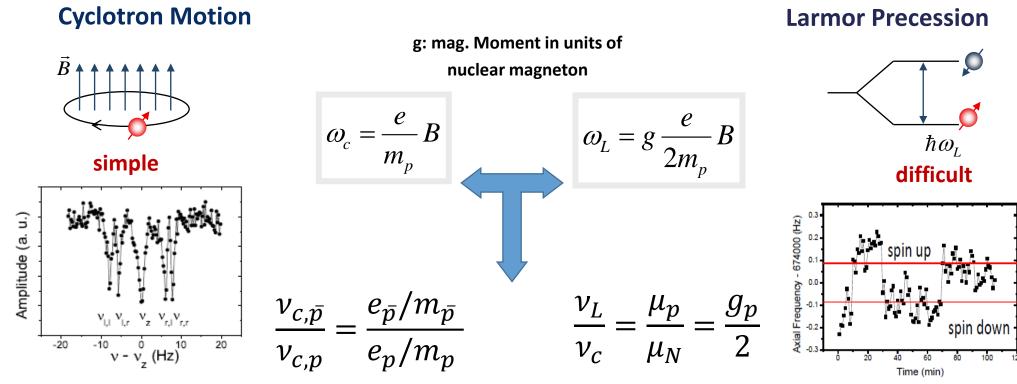
Coming soon: studies of the ballistsic properties of antihydrogen by ALPHA-g, GBAR, AEgIS. 21

Axial	$v_z = 680 \mathrm{kHz}$
Magnetron	$v_{-} = 8 \mathrm{kHz}$
Modified Cyclotron	$v_{+} = 28,9 \mathrm{MHz}$


Reservoir Trap: Stores a cloud of antiprotons, suspends single antiprotons for measurements. Trap is "power failure save".

Precision Trap: Homogeneous field for frequency measurements, $B_2 < 0.5 \ \mu T \ / \ mm^2$ (10 x improved)

Cooling Trap: Fast cooling of the cyclotron motion, $1/\gamma < 4$ s (10 x improved)


Analysis Trap: Inhomogeneous field for the detection of antiproton spin flips, $B_2 = 300 \text{ mT} / \text{mm}^2$

Measurements in Precision Penning Traps

S. Ulmer, A. Mooser et al. PRL 107, 103002 (2011)

A. Mooser, S. Ulmer, et al. PRL 106, 253001 (2011)

Determinations of the q/m ratio and g-factor reduce to measurements of frequency ratios -> in principle very simple experiments -> full control, (almost) no theoretical corrections required.

High Precision Mass Spectrometry

High Precision Magnetic Moment Measurements

The Result

• Most precise test of CPT invariance in the baryon sector

Campaign	R_{exp}		$\sigma(R)_{stat}$		$\sigma(R)_{sys}$
2018-1-SB	1.0010892187	'48	$27 * 10^{-12}$		$27 * 10^{-12}$
2018-2-SB	1.0010892187	27	$47 * 10^{-12}$		$49 * 10^{-12}$
2018-3-PK	1.0010892187	'48	$19 * 10^{-12}$		$14 * 10^{-12}$
2018-1-SB	1.001089218781		$19 * 10^{-12}$		$23 * 10^{-12}$
Result			1.001 089 2	218 757 (16)	
SME Limits	10 ⁻¹²	10 ⁻⁹		10 ⁻⁶	10 ⁻³
$ \delta\omega_{\rm c}^{\overline{p}} - R_{\overline{p},p,\exp}\delta\omega_{\rm c}^{p} - 2R_{\overline{p},p,\exp}\delta\omega_{\rm c}^{e^{-}} < 1.96 \times$	10 ⁻²⁷ GeV				
Coefficient Previous Limit Improved Limit					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 4.14 5 4.31				
$ \begin{array}{ c c c c c } \hline \tilde{c}_p^{XX} , \tilde{c}_p^{*XX} &< 1.19 \cdot 10^{-10} &< 2.86 \cdot 10^{-11} \\ \tilde{c}_p^{YY} , \tilde{c}_p^{*YY} &< 1.19 \cdot 10^{-10} &< 2.86 \cdot 10^{-11} \\ \tilde{c}_p^{ZZ} , \tilde{c}_p^{*ZZ} &< 7.85 \cdot 10^{-11} &< 1.82 \cdot 10^{-11} \\ \hline \end{array} $	4.14				

 $R_{\overline{p},p} = -1.000\ 000\ 000\ 003\ (16)$

Result consistent with CPT invariance

Ding et al., Phys. Rev. D 102, 056009 (2020)

Larmor Frequency – extremely hard

Measurement based on continuous Stern Gerlach effect.

Energy of magnetic dipole in magnetic field

$$\Phi_M = -(\overrightarrow{\mu_p} \cdot \overrightarrow{B})$$

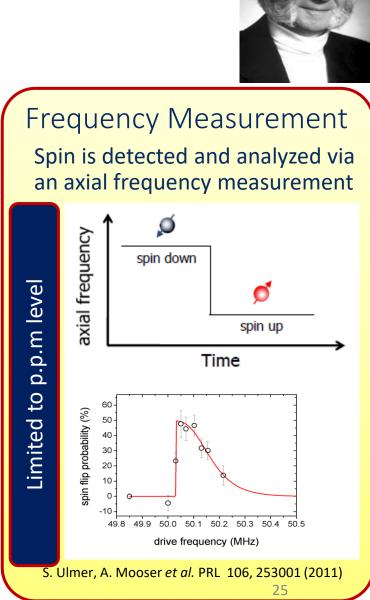
Leading order magnetic field correction

$$B_z = B_0 + B_2 \left(z^2 - \frac{\rho^2}{2} \right)$$

This term adds a spin dependent quadratic axial potential -> Axial frequency becomes a function of the spin state

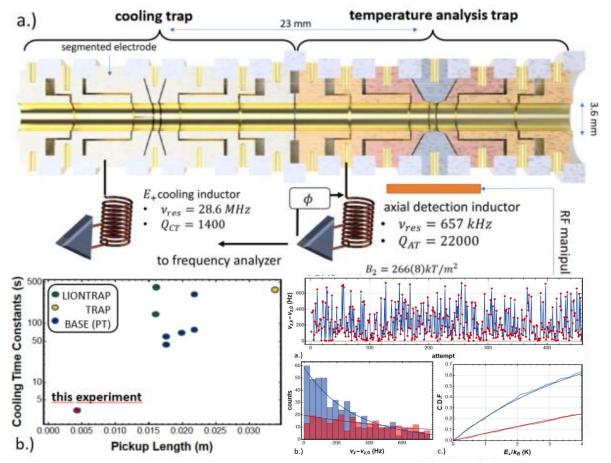
$$\Delta v_z \sim \frac{\mu_p B_2}{m_p v_z} := \alpha_p \frac{B_2}{v_z}$$

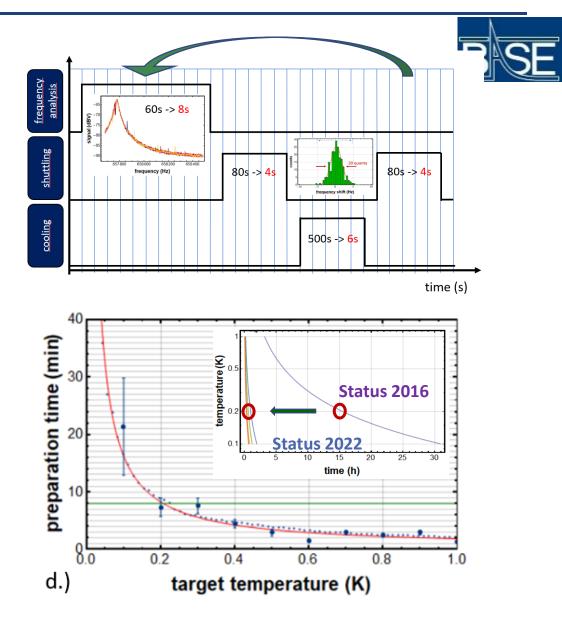
the curse (and blessing): 1000 times harder than electron experiments


- Very difficult for the proton/antiproton system.

 $B_2 \sim 300000 \ T/m^2$

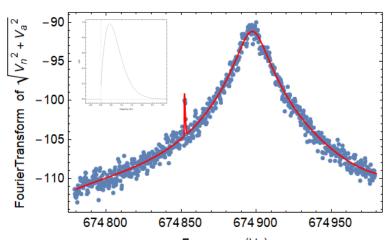
- Most extreme magnetic conditions ever applied to single particle. $\Delta u \approx 170 \ mHz$


$$\Delta v_z \sim 170 \ mHz$$


Single Penning trap method is limited to the p.p.m. level

Sub-Thermal Cooling

• Prepare particle with low radial temperature based on a 4K resisitive cooling circuit.


 Demonstrated single spin flip resolution in 8 min. of preparation time, took 15h in 2016.

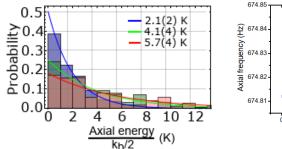
Constraining Axion/Photon Coupling collaboration), Physical Review Letters. **126,** 041301 (20<mark>21</mark>

- Axions at the right Compton frequency would source a radio-frequency signal that could be picked up by our single particle detection systems -90
 - Important feature: cold axions and axion like particles oscillate at their Compton frequencies

$$v_a = m_a c_0^2 / h$$

In a strong external magnetic field **axions can** convert into photons via the inverse Primakoff effect. $\boldsymbol{B}_{\boldsymbol{a}} = -\frac{1}{2}g_{a\gamma}r\sqrt{\rho_{a}c_{0}\hbar}B_{e}\boldsymbol{e}_{\boldsymbol{\phi}}$ PTFE former

J. Devlin et al., (BA

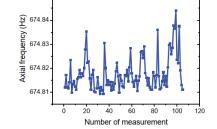

• Axion signal:
$$V_a = \frac{\pi}{2} g_{a\gamma} v_a \sqrt{\rho_a \hbar c_0} * Q \sqrt{\tau(v, Q, p)} \kappa N_T (r_2^2 - r_1^2) B_e$$

Noise-Floor: $V_n = \sqrt{e_n^2 \Delta v + 4k_B T_z R_p \tau(v, Q, p) \kappa^2 \Delta v}$

Copper wire

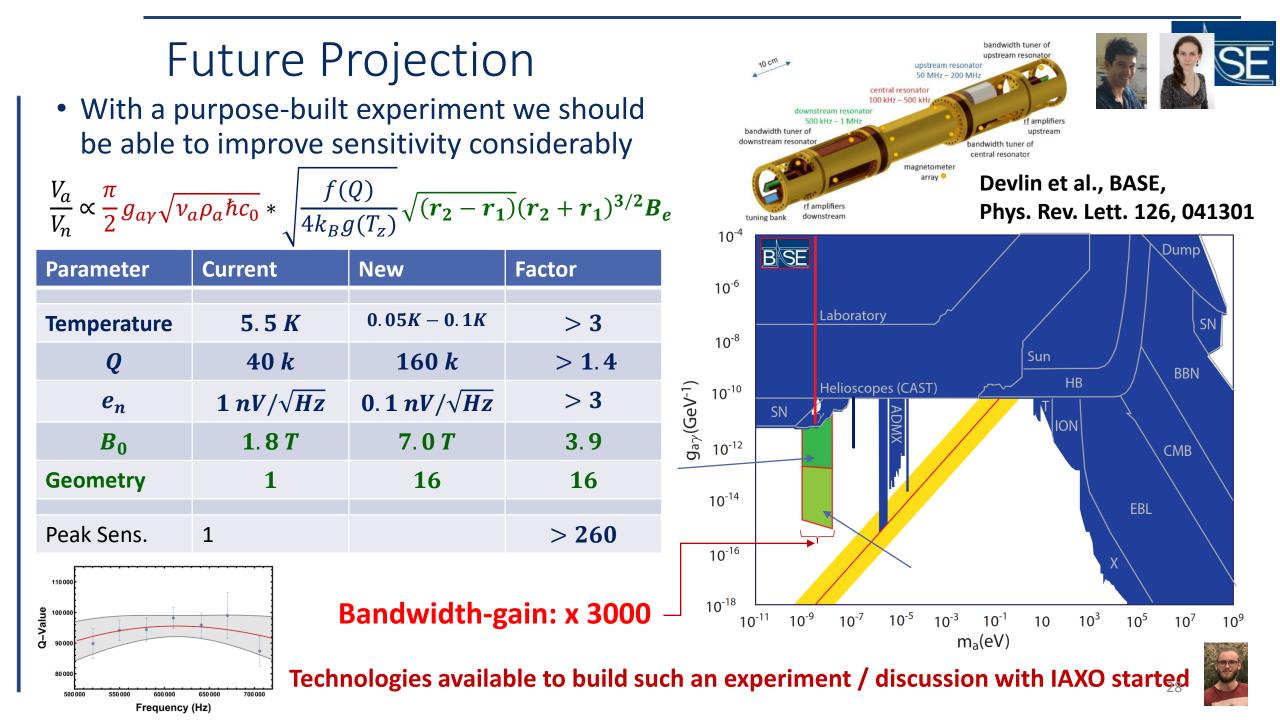
Sapphire spacers

The most important parameter to derive **appropriate limits** is the resonator temperature T_z


NbTi housing

Inductor

NbTi wire


ntiproton

Penning trap

Penning trap: calibrated by single particle quantum thermometry

Summary of SME Limits by BASE

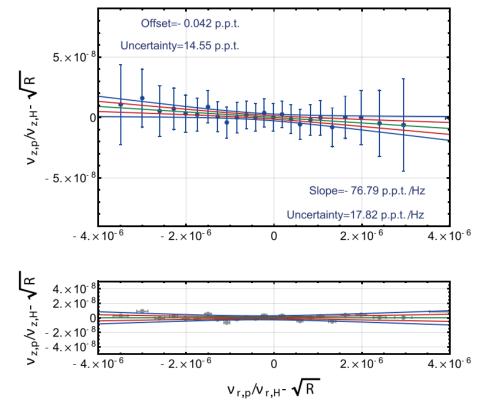
• Magnetic Moment Measurements

• 2022 Charge-to-Mass Ratio Measurement

Coefficient	Limit	
$\left \tilde{b}_{p}^{z} \right $	$< 1.8 \cdot 10^{-24} \text{ GeV}$	Coefficien
$\left ilde{b}_{p}^{XX} ight.+ ilde{b}_{p}^{YY} ight $	$< 1.1 \cdot 10^{-8} \mathrm{GeV^{-1}}$	$ \tilde{c}_e^{XX} $
$\left ilde{b}_{p}^{ZZ} ight $	$< 7.8 \cdot 10^{-9} \mathrm{GeV^{-1}}$	$\begin{vmatrix} c_e^{-z} \\ \tilde{c}_e^{ZZ} \end{vmatrix}$
$\left ilde{b}_{p}^{*z} ight $	$< 3.5 \cdot 10^{-24} \text{ GeV}$	$\frac{ \tilde{c}_p^{XX} }{ \tilde{c}_p^{XX} , \tilde{c}_p^* }$
$\left ilde{b}_{p}^{*XX} + ilde{b}_{p}^{*YY} ight $	$< 7.4 \cdot 10^{-9} \mathrm{GeV^{-1}}$	$ \tilde{c}_p^{YY} , \tilde{c}_p^{*Y} $
$\left ilde{b}_{p}^{*ZZ} ight $	$< 2.7 \cdot 10^{-8} \text{ GeV}^{-1}$	$ c_{p}^{2} , c_{p}^{*2} $

Coefficient	Previous Limit	Improved Limit	Factor
$ \tilde{c}_e^{XX} $	$< 3.23 \cdot 10^{-14}$	$< 7.79 \cdot 10^{-15}$	4.14
$ ilde{c}_e^{YY} $	$< 3.23 \cdot 10^{-14}$	$< 7.79 \cdot 10^{-15}$	4.14
$ \tilde{c}_e^{ZZ} $	$< 2.14 \cdot 10^{-14}$	$< 4.96 \cdot 10^{-15}$	4.31
$ \tilde{c}_p^{XX} , \tilde{c}_p^{*XX} $	$< 1.19 \cdot 10^{-10}$	$< 2.86 \cdot 10^{-11}$	4.14
$ \tilde{c}_p^{YY} , \tilde{c}_p^{*YY} $	$< 1.19 \cdot 10^{-10}$	$< 2.86 \cdot 10^{-11}$	4.14
$ \tilde{c}_p^{ZZ} , \tilde{c}_p^{*ZZ} $	$< 7.85 \cdot 10^{-11}$	$< 1.82 \cdot 10^{-11}$	4.31

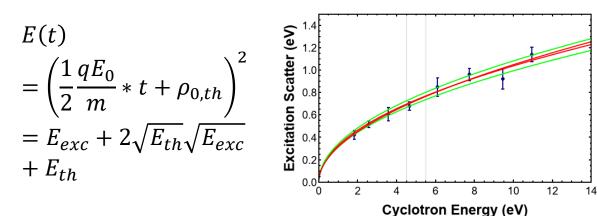
Coefficient	Limit
$ ilde{b}_p^{*X}$	$< 9.7 \cdot 10^{-25} \text{ GeV}$
$ ilde{b}_p^{*Y}$	$< 9.7 \cdot 10^{-25} \text{ GeV}$
$\left ilde{b}_{p}^{*XX} ight ilde{b}_{p}^{*YY} ight $	$< 5.4 \cdot 10^{-9} \mathrm{GeV^{-1}}$
$ ilde{b}_p^{*XZ}$	$< 3.7 \cdot 10^{-9} \mathrm{GeV^{-1}}$
$ ilde{b}_p^{*YZ}$	$< 3.7 \cdot 10^{-9} \mathrm{GeV^{-1}}$
$ ilde{b}_p^{*XY}$	$< 2.7 \cdot 10^{-9} { m GeV^{-1}}$

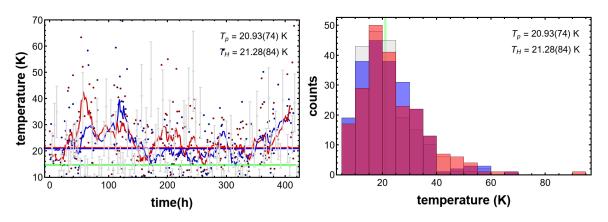

• Time-base Charge-to-Mass analysis ongoing

Work in progress, to be finished within the next 3 months.

Dominant Systematic Limitations

• Lineshape Shift

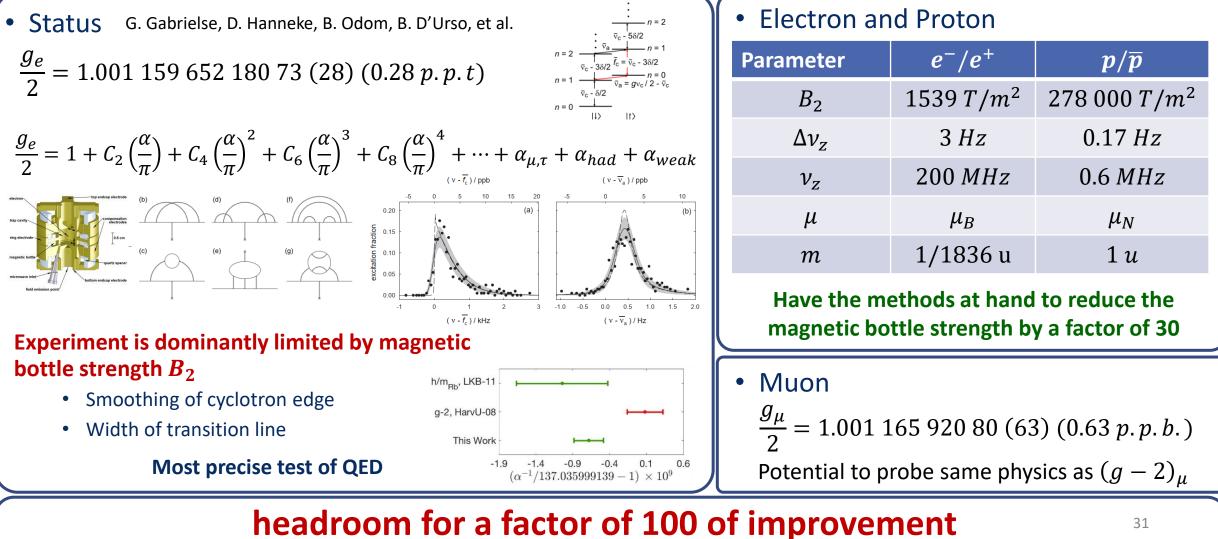



 Scaling of particle frequency with respect to frequency center of the detection resonator leads to frequency dependent shift of the measured frequency ratio.

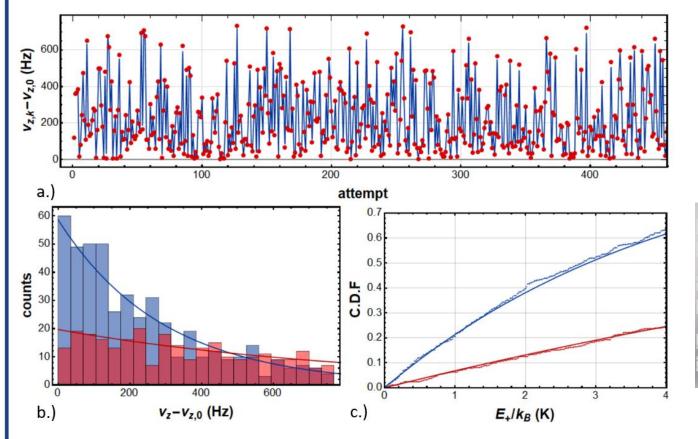
Strong suppression in PEAK measurements

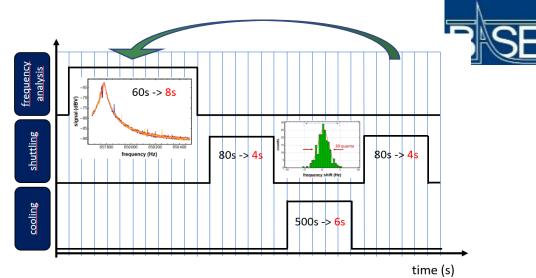
Temperature Shifts

 $\frac{\Delta v_c}{v_c} = \frac{v_+}{v_c^2} \Delta v_+ + \frac{v_z}{v_c^2} \Delta v_z \approx \frac{1}{4\pi^2 m_0 v_z^2} \frac{B_2}{B_0} k_B T_z = -23.5(1.5) \frac{\text{p.p.t.}}{\text{K}},$



Continuously measured in PEAK measurements


Electron/Positron Magnetic Moment


Prototype Fundamental Physics Experiment: A stable lepton in an empty, conducting box

Sub-Thermal Cooling

• Prepare particle with low radial temperature based on a 4K resisitive cooling circuit.

• Thermalization is stopped once particle at low radial temperature is found.

• New cooling trap implemented

3.6mm	Parameter	2016 measurement (PT)	2022 measurement (CT)
	detector temperature	12.8 K	4.2 K
	detection Q	450	1250
	R _p	75.000 Ω	360.000 Ω
	pickup length (D_{eff})	21.5 mm	4.8 mm
	thermalization time $ au$	370 s	4.2 s
	Transport time	2 x 78 s	2 x 4.6 s
	Readout time	64 s	16 s

 Improves sub-thermal cooling cycles from hours to minutes (factor of 60 improvement) 32